Subscribe to RSS
DOI: 10.1055/s-2004-819899
© Georg Thieme Verlag Stuttgart · New York
Proteasen in Malignomen
Bedeutung für Pathogenese und mögliche therapeutische KonsequenzenProteases in malignant tumorsTheir significance for the pathogenesis and possible therapeutic applicationsPublication History
eingereicht: 26.6.2003
akzeptiert: 7.11.2003
Publication Date:
11 February 2004 (online)
Proteasen sind an einer Fülle von Stoffwechselvorgängen insbesondere bei Gerinnung, Entzündung, Entwicklung und Apoptose beteiligt. Auch bei zahlreichen Erkrankungen spielen sie in der Pathogenese eine entscheidende Rolle. So sind einige erbliche Erkrankungen bekannt, die auf erhöhter Proteaseaktivität beruhen. Am bekanntesten sind das Lungenemphysem (α-1-Antitrypsin-Inhibitor Defekt, 14) und das angioneurotische Ödem (C1-Esterase-Inhibitor Defekt, 4). Allerdings sind diese Erkrankungen eher selten. Wesentlich häufiger sind nicht erblich bedingte Veränderungen der Proteaseaktivität, beispielsweise bei rheumatischen Erkrankungen und bei Malignomen. Im Folgenden soll insbesondere auf die Rolle der Proteasen im Malignomgeschehen eingegangen werden. Die selektive Hemmung bestimmter Proteaseaktivitäten stellt prinzipiell eine Therapiemöglichkeit für Malignome dar. Leider haben derartige Therapieversuche bislang nicht den gewünschten Erfolg gebracht. Im Folgenden soll dargestellt werden, wo die Probleme und Chancen eines Eingriffs in das Proteasesystem bei Tumoren liegen.
Proteasen werden nach verschiedenen Gesichtspunkten eingeteilt: nach
Art der Spaltung im Protein (Abspaltung vom aminoterminalen oder vom carboxyterminalen Ende des Proteins), der topographischen Verteilung des Enzyms in der Zelle (im Zytosol, membranassoziiert oder in Lysosomen enthalten), dem aktiven Zentrum.
Letztere Einteilung ist im Hinblick auf Funktion und Inhibition der Proteasen besonders zweckmäßig und wird daher bevorzugt verwendet.
Literatur
- 1 Adams J. Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol. 2002; 6 493-500
- 2 Beattie G, Smyth J. Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites. Clin Cancer Res. 1998; 4 1899-1902
- 3 Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R. The proteasome. Annu Rev Biophys Biomol Struct. 1999; 28 295-317
- 4 Bond W J, Herrod H, Duberstein L. Hereditary angioedema: association with IgA deficiency and otolaryngologic disorders. Laryngoscope. 1981; 91 416-421
- 5 Bonomi P. Matrix metalloproteinases and matrix metalloproteinase inhibitors in lung cancer. Semin Oncol. 2002; 29 78-86
- 6 Bose S, Mason G, Rivett A. Phosphorylation of proteasomes in mammalian cells. Mol Biol Rep. 1999; 26 11-14
- 7 Bramhall S. The matrix metalloproteinases and their inhibitors in pancreatic cancer. From molecular science to a clinical application. Int J Pancreatol. 1997; 21 1-12
- 8 Cater S, Lees W, Hill J, Brzin J, Kay J, Phylip L. Aspartic proteinase inhibitors from tomato and potato are more potent against yeast proteinase A than cathepsin D. Biochim Biophys Acta. 2002; 1596 76-82
- 9 Coussens L, Fingleton B, Matrisian L. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002; 295 2387-2392
- 10 Cuervo A, Dice J. Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med. 1998; 76 6-12
- 11 Dano K, Andreasen P, Grondahl-Hansen J, Kristensen P, Nielsen L, Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985; 44 139-266
- 12 DeClerck Y. Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer. 2000; 36 1258-1268
- 13 Evans J, Stark A, Johnson C. et al . A phase II trial of marimastat in advanced pancreatic cancer. Br J Cancer. 2001; 85 1865-1870
- 14 Gadek J, Klein H, Holland P, Crystal R. Replacement therapy of alpha 1-antitrypsin deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects. J Clin Invest. 1981; 68 1158-1165
- 15 Ghadimi B, Schlag P. Tumor metastasis. Molecular principles and therapeutic options. Chirurg. 1998; 69 1315-1322
- 16 Giavazzi R, Garofalo A, Ferri C. et al . Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts. Clin Cancer Res. 1998; 4 985-992
- 17 Hirvonen R, Talvensaari-Mattila A, Paakko P, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 (MMP-2) in T(1-2)N0 breast carcinoma. Breast Cancer Res Treat. 2003; 77 85-91
- 18 Janicke F, Schmitt M, Pache L. et al . Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat. 1993; 24 195-208
- 19 Katunuma N, Tsuge H, Nukatsuka M, Asao T, Fukushima M. Structure-based design of specific cathepsin inhibitors and their application to protection of bone metastases of cancer cells. Arch Biochem Biophys. 2002; 397 305-311
- 20 Koblinski J, Ahram M, Sloane B. Unraveling the role of proteases in cancer. Clin Chim Acta. 2000; 291 113-135
- 21 Kolkhorst V, Sturzebecher J, Wiederanders B. Inhibition of tumour cell invasion by protease inhibitors: correlation with the protease profile. J Cancer Res Clin Oncol. 1998; 124 598-606
- 22 LeBlanc R, Catley L, Hideshima T. et al . Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 2002; 62 4996-5000
- 23 Leto G, Pizzolanti G, Tumminello F, Gebbia N. Effects of E-64 (cysteine-proteinase inhibitor) and pepstatin (aspartyl-proteinase inhibitor) on metastasis formation in mice with mammary andovarian tumors. In Vivo. 1994; 8 231-236
- 24 Macaulay V, O’Byrne K, Saunders M. et al . Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res. 1999; 5 513-520
- 25 Mitsiades N, Mitsiades C, Richardson P. et al . The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003; 101 2377-2380
- 26 Navab R, Mort J, Brodt P. Inhibition of carcinoma cell invasion and liver metastases formation by the cysteine proteinase inhibitor E-64. Clin Exp Metastasis. 1997; 15 121-129
- 27 Ng R, Kellen J. The role of plasminogen activators in metastasis. Med Hypotheses. 1983; 10 291-293
- 28 Orlowski R, Stinchcombe T, Mitchell B. et al . Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol. 2002; 20 4420-4427
- 29 Parsons S, Watson S, Steele R. Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites. Eur J Surg Oncol. 1997; 23 526-531
- 30 Pepper M. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001; 21 1104-1117
- 31 Pray T, Parlati F, Huang J. et al . Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Updat. 2002; 5 249-258
- 32 Quirt I, Bodurth A, Lohmann R. et al . Phase II study of marimastat (BB-2516) in malignant melanoma: A clinical and tumor biopsy study of the National Cancer Institute of Canada Clinical Trials Group. Invest New Drugs. 2002; 20 431-437
- 33 Richardson P, Barlogie B, Berenson J. et al . A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003; 348 2609-2617
- 34 Rockway T. Small molecule inhibitors of urokinase-type plasminogen activator. Expert Opinion on Therapeutic Patents. 2003; 13 773-786
- 35 Shepherd F, Giaccone G, Seymour L. et al . Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol. 2002; 20 4434-4439
- 36 Spyratos F, Maudelonde T, Brouillet J. et al . Cathepsin D: an independent prognostic factor for metastasis of breast cancer. Lancet. 1989; 2 1115-1118
- 37 Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol. 2000; 10 415-433
- 38 Teicher B, Ara G, Herbst R, Palombella V, Adams J. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res. 1999; 5 2638-2645
- 39 Thomssen C, Schmitt M, Goretzki L. et al . Prognostic value of the cysteine proteases cathepsins B and cathepsin L in human breast cancer. Clin Cancer Res. 1995; 1 741-746
- 40 Van Noorden C, Jonges T, Van Marle J. et al . Heterogeneous suppression of experimentally induced colon cancer metastasis in rat liver lobes by inhibition of extracellular cathepsin B. Clin Exp Metastasis. 1998; 16 159-167
- 41 Wald M, Olejar T, Sebkova V, Zadinova M, Boubelik M, Pouckova P. Mixture of trypsin, chymotrypsin and papain reduces formation of metastases and extends survival time of C57Bl6 mice with syngeneic melanoma B16. Cancer Chemother Pharmacol. 2001; 47 S16-22
- 42 Wojtowicz-Praga S, Low J, Marshall J. et al . Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer. Invest New Drugs. 1996; 14 193-202
- 43 Wright J, Hillsamer V, Gore-Langton R E, Cheson B D. Clinical trials referral resource. Current clinical trials for the proteasome inhibitor PS-341. Oncology (Huntingt). 2000; 14 1589-1590, 1593-1594, 1597
- 44 Zwickl P, Voges D, Baumeister W. The proteasome: a macromolecular assembly designed for controlled proteolysis. Philos Trans R Soc Lond B Biol Sci. 1999; 354 1501-1511
Priv.-Doz. Dr. med. Eleonore Fröhlich
Anatomisches Institut, Eberhard-Karls-Universität Tübingen
Österbergstraße 3
72074 Tübingen