References
1a
Consonni R.
Croce PD.
Ferraccioli R.
La Rosa C.
J. Chem. Soc., Perkin Trans. 1
1996,
1809
1b
Ohno M.
Sato H.
Eguchi S.
Synlett
1999,
207
2
Testa E.
Fontanella L.
Farmaco, Ed. Sci.
1966,
549
3
Ohno M.
Sato H.
Eguchi S.
Synlett
1999,
207
4a
Cenini S.
Console S.
Crotti C.
Tollari S.
J. Organomet. Chem.
1993,
451:
157
4b
Braunstein P.
Kervennal J.
Richert JL.
Angew. Chem., Int. Ed. Engl.
1985,
24:
768
4c
Braunstein P.
Devenish R.
Gallezot P.
Heaton BT.
Humphreys CJ.
Kervennal J.
Mulley S.
Ries M.
Angew. Chem., Int. Ed. Engl.
1988,
27:
927
5
Nishiyama Y.
Maema R.
Ohno K.
Hirose M.
Sonoda N.
Tetrahedron Lett.
1999,
40:
5717
6
Nishiyama Y.
Hirose M.
Kitagaito W.
Sonoda N.
Tetrahedron Lett.
2002,
43:
1855
7 Recently, Gang et al. reported the synthesis of benzoxazolinone by the selenium-catalyzed carbonylation of o-nitrophenol with carbon monoxide. See: Gang L.
Junzhu C.
Shiwei L.
Cuihua Xueban
2003,
24:
5
8 We also showed the selenium catalyzed the synthetic method of cyclic ureas, urethanes and quinazolinedione by the carbonylation of aromatic amines with carbon monoxide. See: Yoshida T.
Kambe N.
Murai S.
Sonoda N.
Bull. Chem. Soc. Jpn.
1987,
60:
1793
9 When 1a was treated with carbon monoxide and water (5 equiv) in the presence of a catalytic amount of selenium at 150 °C for 5 h, 2a was not obtained and 2-aminobenzyl alcohol was formed in 87% yield.
10
A Typical Procedure is as follows: In a 50 mL stainless steel autoclave were placed o-nitrobenzyl alcohol (77 mg, 0.5 mmol), selenium (8 mg, 0.1 mmol), N-methylpyrrodine (425mg, 5 mmol), THF (5 mL) and a magnetic stirring bar. The mixture was stirred under pressurized carbon monoxide (30 atm) at 140 °C for 5 h. After the evacuation of the excess carbon monoxide at r.t., the deposited selenium was filtered off; the solution was then extracted with diisopropyl ether (30 mL × 3). The organic layer was dried over MgSO4 and the solvent was evaporated in vacuo. The residual solid was recrystallized from CH2Cl2-C6H14 to give 1,4-dihydro-2H-1,3-benzoxazine-2-one in 85% yield.
Compound 2g: 1H NMR (d
6-DMSO): δ = 2.50 (s, 1 H), 3.34 (br s, 1 H), 5.17 (t, J = 5.2 Hz, 1 H), 5.35 (t, J = 4.0 Hz, 1 H), 6.83 (t, J = 8.0 Hz, 1 H), 6.98 (t, J = 8.0 Hz, 1 H), 7.21 (q, J = 8.0 Hz, 2 H), 10.41 (s, 1 H). 13C NMR: δ = 63.8, 79.5, 113.4, 118.6, 121.8, 124.9, 128.4, 136.0, 150.5. IR: 659.6, 753.5, 1058.8, 1087.6, 1263.6, 1291.8, 1413.6, 1692.5, 1686.7, 2947.0, 3090.8, 3154.1, 3235.4, 3333.2 cm-1.
Compound 2h: 1H NMR (d
6-DMSO): δ = 3.21 (t, J = 4.8 Hz, 2 H), 4.52 (t, J = 4.8 Hz, 2 H), 6.97 (d, J = 7.6 Hz, 1 H), 7.00 (t, J = 7.6 Hz, 1 H), 7.09 (d, J = 7.6 Hz, 1 H), 7.17 (t, J = 7.6 Hz, 1 H), 8.83 (s, 1 H). 13C NMR: δ = 34.5, 68.1, 119.4, 123.1, 126.2, 127.7, 130.3, 136.0, 157.2. IR: 679.7, 741.9, 756.5, 1058.4, 1090.9, 1277.5, 1339.7, 1420.6, 1682.3, 3102.0, 3238.0 cm-1.
11
Kondo K.
Yokoyama S.
Miyoshi N.
Murai S.
Sonoda N.
Angew. Chem., Int. Ed. Engl.
1979,
18:
691