Synlett 2004(6): 933-943  
DOI: 10.1055/s-2004-820029
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Simple Syntheses of Seven-Membered Rings via an Entropy/Strain Reduction Strategy

Louise A. Byrne, Declan G. Gilheany*
Chemistry Department, The Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4. Ireland
Fax: +353(1)7162127; e-Mail: declan.gilheany@ucd.ie;
Further Information

Publication History

Received 28 November 2003
Publication Date:
04 March 2004 (online)

Abstract

The straightforward four-step synthesis of unsaturated seven-membered carbocycles and heterocycles via a route starting from catechols and quinones is described. The route is based on the Perkin ring-closure reaction and was designed to alleviate the usual problems associated with the formation of medium rings. This is achieved through the presence of unsaturation in the starting mater­ial, which alleviates ring strain problems, reduces the entropy of ­activation and ensures that the chain ends are suitably orientated to encourage ring closure.

    References

  • 1a Willstätter R. Berichte  1901,  129 
  • 1b Willstätter R. Berichte  1901,  3163 
  • 1c For an account in English see: Holmes HL. In The Alkaloids   Vol. 1:  Mansker RHF. Holmes HL. Academic Press; New York: 1950.  p.288 
  • 2 Willstätter R. Waser E. Berichte  1911,  3423 
  • 3a Turner S. The Design of Organic Syntheses   Elsevier; Amsterdam: 1976.  p.3 
  • 3b Fleming I. Selected Organic Syntheses   Wiley & Sons; New York: 1793.  Chap. 2.
  • 3c Yet L. Chem. Rev.  2000,  100:  2963 
  • 3d Yet L. Tetrahedron  1999,  55:  9349 
  • 4 For a review see: Ewing DF. In 2nd Supplement to Rodd’s Chemistry of Carbon Compounds   2nd ed., Vol. 2:  Sainsbury M. Elsevier; Amsterdam: 1994.  Chap. 8a.
  • 5 Comprehensive Heterocyclic Chemistry II   Katritzky AR. Schriver EFV. Rees CW. Pergamon; Oxford: 1996. 
  • 6 Sammes PG. In Comprehensive Organic Chemistry, Heterocyclic Chemistry   Vol. 4:  Barton D. Ollis WD. Pergamon; Oxford: 1979. 
  • For reviews of the chemistry of azepines and their synthesis see:
  • 7a Le Count D. In Comprehensive Heterocyclic Chemistry II   Vol. 9:  Katritzky AR. Schriver EFV. Rees CW. Pergamon; Oxford: 1996.  Chap. 9.01. p.1 
  • 7b Sammes PG. In Comprehensive Organic Chemistry, Heterocyclic Chemistry   Vol. 4, Part 17.6:  Barton D. Ollis WD. Pergamon; Oxford: 1979.  p.582 
  • 8 Pabel M. Wild SB. In Comprehensive Heterocyclic Chemistry II   Vol. 9:  Katritzky AR. Schriver EFV. Rees CW. Pergamon; Oxford: 1996.  Chap. 9.34. p.947 
  • For reviews of the chemistry of thiepins and their synthesis see:
  • 9a Yamamoto K. Yamazaki S. In Comprehensive Heterocyclic Chemistry II   Katritzky AR. Schriver EFV. Rees CW. Pergamon; Oxford: 1996.  Chap. 9.03. p.67 
  • 9b Sammes PG. In Comprehensive Organic Chemistry, Heterocyclic Chemistry   Vol. 4, Part 19.2:  Barton D. Ollis WD. Pergamon; Oxford: 1979.  p.865 
  • For reviews of the chemistry of oxepins and their synthesis see:
  • 10a Belenkii LI. In Comprehensive Heterocyclic Chemistry II   Vol. 9:  Katritzky AR. Schriver EFV. Rees CW. Pergamon; Oxford: 1996.  Chap. 9.02. p.45 
  • 10b Sammes PG. In Comprehensive Organic Chemistry, Heterocyclic Chemistry   Vol. 4:  Barton D. Ollis WD. Pergamon; Oxford: 1979.  Part 18.6. p.773 
  • For reviews on the Dieckmann condensation see:
  • 11a Schaefer JP. Bloomfield JJ. Org. React.  1967,  1 
  • 11b Ewing DF. In 2nd Supplement to Rodd’s Chemistry of Carbon Compounds   2nd ed., Vol. 2:  Sainsbury M. Elsevier; Amsterdam: 1994.  Chap. 8a. p.687 
  • 11c Sharp JT. In 2nd Supplement to Rodd’s Chemistry of Carbon Compounds   Vol. 4:  Sainsbury M. Elsevier Science; Amsterdam: 1989.  Part K.
  • 11d Hill RK. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Pergamon Press; NewYork: 1991.  p.806 
  • 12 For a leading review on the Thorpe-Ziegler Reaction see: Davis BR. Garratt PJ. In Comprehensive Organic, Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  p.848 
  • For reviews on the acyloin reaction see
  • 13a Brettle R. In Comprehensive Organic Synthesis   Vol. 3:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  p.626 
  • 13b Finley KT. Chem. Soc. Rev.  1964,  573 
  • 14 The Ruzicka cyclisation: Ewing DF. In 2nd Supplement to Rodd’s Chemistry of Carbon Compounds   2nd ed., Vol. 2:  Sainsbury M. Elsevier; Amsterdam: 1994.  Chap. 8a. p.496 ; and references cited therein
  • For examples of ring synthesis via ring expansion see:
  • 15a Blanco L. Slougui G. Rousseau G. Conia JM. Tetrahedron Lett.  1981,  22:  645 
  • 15b Katoh T. Tanino K. Kuwajima I. Tetrahedron Lett.  1988,  29:  1819 
  • For a review of metal mediated reactions in the synthesis of medium rings see ref. 3c and also:
  • 16a Molander GA. Alonso-Alija C. J. Org. Chem.  1998,  53:  4366 
  • 16b Wender PA. Glorius F. Husfeld CO. Langkopf E. Love JA. J. Am. Chem. Soc.  1999,  121:  5348 
  • 16c Shengming M. Negishi E. J. Org. Chem.  1994,  59:  4730 
  • 16d Marson CM. Benzies DWM. Hobson AD. Adams H. Bailey NA. J. Chem. Soc., Chem. Commun.  1990,  1516 
  • 16e Marson CM. McGregor J. Khan A. J. Org. Chem.  1998,  63:  7833 
  • 16f Herndon JW. Chatterjee G. Patel PP. Matasi JJ. Tumer SU. Harp JJ. Reid MD. J. Am. Chem. Soc.  1991,  111:  7808 
  • 16g Barluenga J. Aznar F. Martin A. Garcia-Granda S. Salvado MA. Pertierra P. J. Chem. Soc., Chem. Commun.  1993,  311 
  • For a review of radical reactions in the synthesis of medium rings see ref. 3d and also:
  • 17a McMurry JE. Miller D. J. Am. Chem. Soc.  1983,  105:  1660 
  • 17b Thompson CM. Docter S. Tetrahedron Lett.  1988,  29:  5213 
  • 17c Duffault JM. Synlett  1998,  33 
  • 17d Dowd P. Choi C.-C. Tetrahedron  1992,  48:  4773 
  • 17e Marshall JA. Andersen NH. Johnson PC. J. Org. Chem.  1970,  35:  186 
  • 17f Sneider BB. Ke Y. Tetrahedron Lett.  1989,  30:  5765 
  • 17g Marco-Contelles J. de Opazo E. J. Org. Chem.  2002,  67:  3705 
  • 18 For a leading review of ring closing metathesis see: Trnka TM. Grubbs RH. Acc. Chem. Res.  2001,  34:  18 
  • An interesting application of ring closing metathesis is from Marco-Contelles and de Opazo, who have used ring closing metathesis to synthesise cycloheptanols in high enantiopurity from the naturally occurring carbohydrate d-mannose:
  • 19a Marco-Contelles J. de Opazo E. Tetrahedron Lett.  2000,  41:  2439 
  • 19b Marco-Contelles J. de Opazo E. J. Org. Chem.  2000,  65:  5416 
  • 20 Wipf P. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  Chap. 71.
  • 21 Cope rearrangement: Wender PA. Filosa MP. J. Org. Chem.  1976,  41:  3490 
  • 22 Claisen rearrangement: Staley SW. Wiseman FL. J. Org. Chem.  1970,  35:  3868 
  • 23 March J. Advanced Organic Chemistry   4th ed.:  Wiley-Interscience; New York: 1992.  p.134 
  • 24 Ewing DF. In 2nd Supplement to Rodd’s Chemistry of Carbon Compounds   2nd ed., Vol. 2:  Sainsbury M. Elsevier; Amsterdam: 1994.  Chap. 8a. p.211 
  • 25 Ewing DF. In 2nd Supplement to Rodd’s Chemistry of Carbon Compounds   2nd ed., Vol. 2:  Sainsbury M. Elsevier; Amsterdam: 1994.  Chap. 8a. p.155 
  • 26 Ewing DF. In 2nd Supplemet to Rodd’s Chemistry of Carbon Compounds   2nd ed., Vol. 2:  Sainsbury M. Elsevier; Amsterdam: 1994.  Chap. 8a. p.156 
  • 27 Preliminary communication: Walsh JG. Furlong PJ. Gilheany DG. J. Chem. Soc., Chem. Commun.  1994,  67 
  • 28a Brillon D. Deslongchamps P. Can. J. Chem.  1984,  62:  2395 
  • 28b Brillon D. Deslongchamps P. Can. J. Chem.  1987,  65:  43 
  • 28c Brillon D. Deslongchamps P. Can. J. Chem.  1987,  65:  56 
  • 29a Gleiter R. Ritter J. Irngartinger H. Lichtenthaler J. Tetrahedron Lett.  1991,  32:  2883 
  • 29b Gleiter R. Ritter J. Irngartinger H. Lichtenthaler J. Tetrahedron Lett.  1991,  32:  2887 
  • 31 Walsh JG. Furlong PJ. Byrne LA. Gilheany DG. Tetrahedron  1999,  55:  11519 
  • 32 Walsh JG. Furlong PJ. Gilheany DG. J. Chem. Soc., Perkin Trans. 1  1999,  3657 
  • 33 Hayaishi O. In Molecular Mechanisms of Oxygen Activation   Hayaishi O. Academic Press; New York: 1974.  p.1 
  • 34 Tsuji J. Takayanagi H. J. Am. Chem. Soc.  1974,  96:  7349 
  • 35 Tsuji J. Takayanagi H. Tetrahedron  1978,  34:  641 
  • 36 Tsuji J. Takayanagi H. Sakal I. Tetrahedron Lett.  1975,  16:  1245 
  • 37 Speier G. Tyeklar Z. J. Mol. Catal.  1980,  233 
  • 38 Demmin TR. Rogic MM. J. Org. Chem.  1980,  45:  1153 
  • 39 Bassett J. Denney RC. Jeffery GH. Mendham J. Vogels Textbook of Practical Organic Chemistry   4th ed.:  Longmann; London: 1978. 
  • 40 Walsh JG. PhD Thesis   National University of Ireland Maynooth; Ireland: 1992. 
  • 41a Rogic MM. Demmin TR. Hammond WB. J. Am. Chem. Soc.  1976,  98:  7441 
  • 41b Rogic MM. Swerdloff MD. Demmin TR. J. Am. Chem. Soc.  1981,  103:  5795 
  • 42 Rogic MM. Demmin TR. J. Am. Chem. Soc.  1978,  100:  5472 
  • 43 Finkbeiner H. Hay AS. Blanchard HS. Endres GF. J. Org. Chem.  1966,  31:  549 
  • 45 Wiessler M. Tetrahedron Lett.  1977,  18:  233 
  • 46 Wiessler M. Habilitationsschrift   Ruperto-Carola-Universtät zu Heidelberg; Germany: 1978. 
  • 47 Popkova NV. Kobrina LS. Yakobson GG. Izv. Sib. Otd. Akad. Nauk. SSSR, Ser. Khim. Nauk  1978,  116 ; Chem. Abstr. 1979, 90, 54620
  • 48 Jaroszewski JW. Ettlinger MG. J. Org. Chem.  1982,  47:  1212 
  • 51 Byrne LA. Ph.D. Thesis   National University of Ireland, University College Dublin; Irleand: 2003. 
  • 52a Seyden-Peyne J. Reductions by the Alumino- and Borohydrides In Organic Synthesis   2nd ed.:  Wiley-VCH; Chichester: 1997. 
  • 52b See also: Meyer GR. J. Chem. Ed.  1981,  58:  628 
  • 53 Appel R. Angew. Chem., Int. Ed. Engl.  1975,  14:  801 
  • 54a Grieco PA. Masaki Y. J. Org. Chem.  1974,  39:  2135 
  • 54b Ohloff G. Farnow H. Schade G. Chem. Ber.  1956,  98:  1549 
  • 55a Eskola P. Hirsch JA. J. Org. Chem.  1997,  62:  5732 
  • 55b Hutchins RO. Masilamani D. Maryanoff CA. J. Org. Chem.  1976,  41:  1071 
  • 56 Walsh JG. Gilheany DG. J. Heterocyl. Chem.  2002,  39:  1273 
  • 57 Walsh JG. Gilheany DG. Heterocycles  2000,  41:  897 
  • 58 Braye EH. Hubel W. Caplier I. J. Am. Chem. Soc.  1961,  83:  4406 
  • 59 Nicolau KC. Skokotas G. Maligres P. Zuccarello G. Schweiger EJ. Toshima K. Wendeborn S. Angew. Chem., Int. Ed. Engl.  1989,  28:  1272 
  • 60 Furlong PJ. Ph.D. Thesis   National University of Ireland. University College Dublin; Ireland: 1996. 
  • 61 Byrne LA. Furlong PJ. Gilheany DG. Synth Commun.  2004,  34:  issue 9 
  • 62 Stork GA. Grieco PA. Gregson G. In Organic Synthesis   Vol. 6:  Noland WE. Wiley-VCH; Chichester: 1988.  p.638 
30

We use the cis,cis terminology to mean the general stereochemistry that places the carboalkoxy group and other alkene moiety on the same side of the double bonds. Individual compounds are of course named according to the E/Z nomenclature.

44

Throughout the work 3,5-di-tert-butylcatechol is widely used as the substrate of choice. It is a cheap readily available compound and the corresponding quinone is exceptionally stable in comparison with other quinones and as a result less polymeric material is observed. However as a result of the capricious nature of this substrate the results reported for 3,5-di-tert-butylcatechol are potentially not general to all substrates.

49

The current Aldrich catalogue (2003-2004) has the high grade LTA 17 times more expensive than the technical grade. High grade LTA is currently priced at £ 94.10 for 25 g. The same quantity of technical grade LTA costs just £ 5.50

50

Typical procedure: Catechol (1 equiv) was added slowly to a stirred solution of technical grade (95%) LTA (22 equiv) in toluene-MeOH (8 mL/g substrate). The mixture became deep red in colour initially and then darkened as the addition proceeded to finally yield a deep red solution. After stirring overnight a pale yellow solution resulted. The reaction mixture was evaporated and the red/yellow solid residue was treated with Et2O. The resultant white precipitate was filtered and to the filtrate ethylene glycol (5 mL) was added. This prevented a black scum forming from the reaction of the residual lead salts during work up. The filtrate was washed with water, NaHCO3 and water once more then dried over anhyd Na2SO4 The solvent was evaporated and the crude product purified via column chromatography on silica.