Int J Sports Med 2005; 26(4): 286-293
DOI: 10.1055/s-2004-821010
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

The Spatial-Temporal and Coordinative Structures in Elite Male 100-m Front Crawl Swimmers

L. Seifert1 , L. Boulesteix1 , M. Carter1 , D. Chollet1
  • 1C. E. T. A. P. S. Laboratory UPRES JE 2318: University of Rouen, Faculty of Sports Sciences, France
Further Information

Publication History

Accepted after revision: March 10, 2004

Publication Date:
26 August 2004 (online)

Abstract

This study analysed the spatial-temporal and coordinative structures in 12 elite male 100-m front crawl swimmers. Swim performance was analysed over each length of a 25-m pool divided into five zones of 5 m. Velocity (V), stroke rate (SR), and stroke length (SL) were calculated for each zone and each length. Four stroke phases were identified by video analysis and the Index of Coordination (IdC) was established. Three modes of coordination were identified: catch-up (IdC < 0), opposition (IdC = 0), and superposition (IdC > 0). The swimmers tended to reduce the decrease in V and SR over the course of the 100 m by maintaining a stable SL. In fact, these spatial-temporal values were stable during the time spent stroking and were higher or lower during the start, the turns (in and out), and the finish. Thus the spatial-temporal changes did not occur within the lengths, but between them. Conversely, the evolution in the IdC showed that the swimmers had to install the stroke at the beginning and only reached a stable coordination in the second part of the race. Moreover, the IdC increased throughout the different zones of each 25-m length, indicating changes in motor organisation, particularly increases in the push or pull phases. The IdC values corresponded to a superposition of the arms, linked to a six-beat leg kick. Achievement of an effective superposition coordination occurred by boosting the stroke just after the turn-out until the end of the length. Regarding the spatial-temporal and coordinative structures of a 100-m front crawl, great swimming skill was reflected by both high and stable data.

References

  • 1 Arellano R, Brown P, Cappaert J, Nelson R C. Analysis of 50, 100 and 200 m freestyle swimmers at the 1992 Olympic Games.  J Appl Biomech. 1994;  10 189-199
  • 2 Arellano R, Cossor J, Wilson B, Chatard J C. Modelling competitive swimming in different strokes and distances upon regression analysis: a study of the female participants of Sidney 2000 Olympic Games. Blackwell JR, Sanders RH XIXth International Symposium on Biomechanics in Sports. San Francisco; University of California 2001: 53-56
  • 3 Chollet D, Chalies S, Chatard J C. A new index of coordination for the crawl: description and usefulness.  Int J Sports Med. 2000;  21 54-59
  • 4 Chollet D, Moretto P, Pelayo P, Sidney M. Energetic effects of velocity and stroke rate control in non-expert swimmers. Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA Swimming Science VII. London; E & FN Spon 1996: 172-176
  • 5 Chollet D, Pelayo P. Effects of different methodologies in calculating stroke length in swimming.  J Hum Mov Stud. 1999;  36 127-136
  • 6 Chollet D, Pelayo P, Tourny C, Sidney M. Comparative analysis of 100 m and 200 m events in the four strokes in top level swimmers.  J Hum Mov Stud. 1996;  31 25-37
  • 7 Chollet D, Pelayo P, Delaplace C, Tourny C, Sidney M. Stroking characteristic variations in the 100 m freestyle for male swimmers of different skill.  Perc Motor Skills. 1997;  85 167-177
  • 8 Costill D L, Maglischo E W, Richardson (eds) A B. Swimming. Oxford; Blackwell Scientific Publications 1992
  • 9 Craig A B, Skehan P L, Pawelczyk J A, Boomer W L. Velocity, stroke rate, and distance per stroke during elite swimming competition.  Med Sci Sports Exerc. 1985;  17 625-634
  • 10 Deschodt V J, Arsac L M, Rouard A H. Relative contribution of arms and legs in humans to propulsion in 25 m sprint front crawl swimming.  Eur J Appl Physiol. 1999;  80 192-199
  • 11 Kennedy P, Brown P, Chengalur S N, Nelson R C. Analysis of male and female Olympic swimmers in the 100 m events.  Int J Sport Biomech. 1990;  6 187-197
  • 12 Keskinen K L. Measurement of technique in front crawl swimming. Mihyashita M, Mutoh Y, Richardson AB Medicine and Science in Aquatic Sports. Basel; Karger 1994: 117-125
  • 13 Keskinen K L, Komi P V. Effect of leg action on stroke performance in swimming. MacLaren D, Reilly T, Less A Swimming Science VI. London; E & FN Spon 1992: 251-255
  • 14 Kolmogorov S V, Rumyantseva O A, Gordon B J, Cappaert J M. Hydrodynamic characteristics of competitive swimmers of different genders and performance levels.  J Appl Biomech. 1997;  13 88-97
  • 15 Lerda R, Cardelli C, Chollet D. Analysis of the interactions between breathing and arm actions in the front crawl.  J Hum Mov Stud,. 2001;  40 129-144
  • 16 Letzelter H, Freitag W. Stroke length and stroke frequency variations in men's and women's 100 m freestyle swimming. Hollander AP, Huijing PA, de Groot G Swimming Science IV. Champaign, Illinois; Human Kinetics Publishers 1983: 315-322
  • 17 Maglischo E W. Swimming Fastest. Champaign, Illinois; Human Kinetics 2003
  • 18 Maglischo C W, Maglischo E W, Higgins J, Hinrichs R, Luedtke D, Schleihauf R E, Thayer A. A biomechanical analysis of the 1984 U. S. Olympic freestyle distance swimmers. Ungerechts BE, Wilke K, Reischle K Swimming Science V. Champaign, Illinois; Human Kinetics Publishers 1988: 351-359
  • 19 Millet G P, Chollet D, Chalies S, Chatard J C. Coordination in front crawl in elite triathletes and elite swimmers.  Int J Sports Med. 2002;  23 99-104
  • 20 Monteil K M, Rouard A H, Dufour A B, Cappaert J M, Troup J P. Front crawl stroke phases: discriminating kinematic and kinetic parameters. Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA Swimming Science VII. London; E & FN Spon 1996: 45-51
  • 21 Pai Y C, Hay J G, Wilson B D. Stroking techniques of elite swimmers.  J Sports Sci. 1984;  2 225-239
  • 22 Pelayo P, Sidney M, Kherif T, Chollet D, Tourny C. Stroking characteristics in freestyle swimming and relationships with anthropometric characteristics.  J Appl Biomech. 1996;  12 197-206
  • 23 Persyn U, Daly D, Vervaecke H, Van Tilborgh L, Verhetsel H. Profiles of competitors using different patterns in front crawl events. Hollander AP, Huijing PA, de Groot G Swimming Science IV. Champaign, Illinois; Human Kinetics Publishers 1983: 323-328
  • 24 Rouard A H, Schleihauf R E, Troup J P. Hand forces and phases in freestyle stroke. Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA Swimming Science VII. London; E & FN Spon 1996: 35-44
  • 25 Schleihauf R E, Higgins J R, Hinricks R, Luedtke D, Maglischo C, Maglischo E W, Thayer A. Propulsive techniques: front crawl stroke, butterfly, backstroke and breaststroke. Ungerechts BE, Wilke K, Reischle K Swimming Science V. Champaign, Illinois; Human Kinetics Publishers 1988: 53-59
  • 26 Seifert L, Boulesteix L, Chollet D. Effect of gender on the adaptation of arm coordination in front crawl.  Int J Sports Med. 2004;  25 217-223
  • 27 Seifert L, Chollet D, Bardy B. Effect of swimming velocity on arm coordination in front crawl: a dynamical analysis.  J Sports Sci. 2004;  22 651-660
  • 28 Sidney M, Delhaye B, Baillon M, Pelayo P. Stroke frequency evolution during 100 m and 200 m events in front crawl swimming. Keskinen KL, Komi PV, Hollander AP Swimming Science VIII. Jyvaskyla, Finland; University of Jyvaskula 1999: 71-75
  • 29 Toussaint H M, Beek P J. Biomechanics of competitive front crawl swimming.  Sports Med. 1992;  13 8-24

M. L. Seifert

University of Rouen, Faculty of Sports Sciences, CETAPS Laboratory

Bld Siegfried

76821 Mont Saint Aignan Cedex

France

Phone: + 33232107793

Fax: + 33 2 32 10 77 93

Email: l.seifert@libertysurf.fr