Subscribe to RSS
DOI: 10.1055/s-2004-821014
J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York
Fluid Shear of Low Magnitude Increases Growth and Expression of TGFβ1 and Adhesion Molecules in Human Bone Cells in Vitro
Publication History
Received: July 31, 2003
First decision: October 15, 2003
Accepted: February 26, 2004
Publication Date:
07 July 2004 (online)
Abstract
Deformation of the bone matrix by mechanical strain causes fluid shifts within the osteocytic canaliculi which affect osteocytic cell metabolism. We applied low fluid shear (1 - 63 µPa for 10 - 48 h) to human osteoblastic cells (HOB) in vitro to study its impact on cell proliferation and differentiated functions. Proteins involved in translating the physical force into a cellular response were characterised. Low fluid shear stress stimulated proliferation of HOB 1.2-fold when stress was applied intermittently for 24 h. Shear stress also increased differentiated cellular properties such as alkaline phosphatase (ALP) activity (121 % of control), fibronectin (FN) and fibronectin receptor (FNR) expression (290 % and 200 %, respectively). Prostaglandin E2 (PGE2) and TGFβ1 release into the medium were significantly stimulated when shear stress was applied for 6 - 12 h and 24 - 48 h, respectively. TGFβ1 + 2 neutralising antibodies or the presence of indomethacine inhibited the mitogenic effect of fluid shear and reduced ALP activity to its control level. Furthermore, TGFβ treatment induced a dose-dependent increase in FN and FNR expression. Therefore, fluid shear stress of low magnitude (a) suffices to affect HOB metabolism and (b) regulates anchorage of HOB via FN and FNR by stimulating osteoblastic PGE2 and TGFβ secretion.
Key words
Fluid shear stress - osteoblast - fibronectin - integrin - gravitation
References
- 1 Adams D S. Mechanisms of cell shape change: the cytomechanics of cellular response to chemical environment and mechanical loading. J Cell Biol. 1992; 117 83-93
- 2 Bancroft G N, Sikavitsas V I, van den Dolder J, Sheffield T L, Ambrose C G, Jansen J A, Mikos A G. Fluid flow increases mineralized matrix deposition in 3 D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA. 2002; 99 12600-12605
- 3 Bergula A P, Huang W, Frangos J A. Femoral vein ligation increases bone mass in the hindlimb suspended rat. Bone. 1999; 24 171-177
- 4 Bikle D D, Halloran B P. The response of bone to unloading. Bone Miner Metab. 1999; 17 233-244
- 5 Carmeliet G, Bouillon R. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. FASEB J. 1999; 13 (Suppl) 129-134
- 6 Carvalho R S, Scott J E, Suga D M, Yen E H. Stimulation of signal transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone. J Bone Miner Res. 1994; 9 999-1011
- 7 Chen Q, Kinch M S, Lin T H, Burridge K, Juliano R L. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem. 1994; 269 26602-26605
- 8 Cheng B, Zhao S, Luo J, Sprague E, Bonewald L F, Jiang J X. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J Bone Miner Res. 2001; 16 249-259
- 9 Damien E, Price J S, Lanyon L E. Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res. 2000; 15 2169-2176
- 10 Dehority W, Halloran B P, Bikle D D, Curren T, Kostenuik P J, Wronski T J, Shen Y, Rabkin B, Bouraoui A, Morey-Holton E. Bone and hormonal changes induced by skeletal unloading in the mature male rat. Am J Physiol. 1999; 276 E62-69
- 11 Fermor B, Gundle M, Emerton M, Pocock A, Murray D. Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone. 1998; 22 637-643
- 12 Fukuda S, Yasu T, Predescu D N, Schmid-Schönbein G W. Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ Res. 2000; 86 e13-e18
- 13 Gadeleta S J, Boskey A L, Paschalis E, Carlson C, Menschik F, Baldini T, Peterson M, Rimnac C M. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate treated cynomolgus monkeys. Bone. 2000; 27 541-550
- 14 Gazit D, Zilberman Y, Ebner R, Kahn A. Bone loss (osteopenia) in old mice results from diminished activity and availability of TGF-beta. J Cell Biochem. 1998; 70 478-488
- 15 Giancotti F G, Ruoslahti E. Integrin signaling. Science. 1999; 285 1028-1032
- 16 Gronthos S, Simmons P J, Graves S E, Robey P G. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone. 2001; 28 174-181
- 17 Gronthos S, Stewart K, Graves S E, Hay S, Simmons P J. Integrin expression and function on human osteoblast-like cells. J Bone Miner Res. 1997; 12 1189-1197
- 18 Halloran B P, Bikle D D, Harris J, Tanner S, Curren T, Morey-Holton E. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading. J Bone Miner Res. 1997; 12 1068-1074
- 19 Hatton J P, Pooran M, Li C-F, Luzzio C, Hughes-Fulford M. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J Bone Miner Res. 2003; 18 58-66
- 20 Howe A, Aplin A E, Alahari S K, Juliano R L. Integrin signaling and cell growth control. Curr Opinion Cell Biol. 1998; 10 220-231
- 21 Ignotz R A, Massague J. Cell adhesion protein receptors as targets for transforming growth factor-β action. Cell. 1987; 51 189-197
- 22 Jee W SS, Akamine T, Ke H Z, Li X J, Tang L Y, Zeng Q Q. Prostaglandin prevents disuse-induced cortical bone loss. Bone. 1992; 13 153-159
- 23 Jessop H L, Rawlinson S CF, Pitsillides A A, Lanyon L E. Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signalling pathways. Bone. 2002; 31 186-194
- 24 Jiang G L, White C R, Stevens H Y, Frangos J A. Temporal gradients in shear stimulate osteoblastic proliferation via ERK 1/2 and retinoblastoma protein. Am J Physiol Endocrinol Metab. 2002; 283 E383-E389
- 25 Kapur S, Baylink D J, Lau K HW. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone. 2003; 32 241-251
- 26 Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech. 2000; 33 45-51
- 27 Kasperk C H, Wergedal J E, Strong D D, Farley J R, Wangerin K, Gropp H, Ziegler R, Baylink D J. Human bone cell phenotypes differ depending on their skeletal site of origin. J Clin Endocrinol Metab. 1995; 80 2511-2517
- 28 Kasra M, Grynpas M D. The effects of androgens on the mechanical properties of primate bone. Bone. 1995; 17 265-270
- 29 Kassem M, Kveiborg M, Eriksen E F. Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol. Eur J Clin Invest. 2000; 30 429-437
- 30 Klein-Nulend J, Burger E H, Semeins C M, Raisz L G, Pilbeam C C. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res. 1997; 12 45-51
- 31 Klein-Nulend J, Semeins C M, Burger E H. Prostaglandin mediated modulation of transforming growth factor β metabolism in primary mouse osteoblastic cells in vitro. J Cellular Physiol. 1996; 168 1-7
- 32 Kontulainen S, Kannus P, Haapasalo H, Sievänen H, Pasanen M, Heinonen A, Oja P, Vuori I. Good maintenance of exercise induced bone gain with decreased training of female tennis and squash players: a prospective 5 year follow-up of young and old starters and controls. J Bone Miner Res. 2001; 16 195-205
- 33 Kurata K, Uemura T, Nemoto A, Tateishi T, Murakami T, Higaki H, Miura H, Iwamoto Y. Mechanical strain effect on bone-resorbing activity and messenger RNA expressions of marker enzymes in isolated osteoclast culture. J Bone Miner Res. 2001; 16 722-730
- 34 Leblanc A D, Schneider V S, Evans H J, Engelbretson D A, Krebs J M. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990; 5 843-850
- 35 Liegibel U M, Sommer U, Tomakidi P, Hilscher U, van den Heuvel L, Pirzer R, Hillmeier J, Nawroth P, Kasperk C. Concerted action of androgens and mechanical strain shifts bone metabolism from high turnover into an osteoanabolic mode. J Exp Med. 2002; 196 1387-1392
- 36 Ma Y, Jee W SS, Yuan Z, Wei W, Chen H, Pun S, Liang H, Lin C. Parathyroid hormone and mechanical usage have a synergistic effect in rat tibial diaphyseal cortical bone. J Bone Miner Res. 1999; 14 439-448
- 37 McAllister T N, Frangos J A. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res. 1999; 14 930-936
- 38 Moazzam F, DeLano F A, Zweifach B W, Schmid-Schönbein G W. The leukocyte response to fluid stress. Proc Natl Acad Sci USA. 1997; 94 5338-5343
- 39 Oktay M, Wary K K, Dans M, Birge R B, Giancotti K C. Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol. 1999; 145 1461-1469
- 40 Owen I, Burr D, Turner C H, Qiu J, Onyia J, Duncan R L. Mechanotransduction in bone: Osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol. 1997; 42 C810-C815
- 41 Pilbeam C, Rao Y, Voznesensky O, Kawaguchi H, Alander C, Raisz L, Herschman H. Transforming growth factor β1 regulation of prostaglandin G/H synthase 2 expression in osteoblastic MC3T3-E1 cells. Endocrinology. 1997; 138 4672-4682
- 42 Rawlinson S CF, Wheeler-Jones C PD, Lanyon L E. Arachidonic acid for loading induced prostacyclin and prostaglandin E2 release from osteoblasts and osteocytes is derived from the activities of different forms of phospholipase A2. Bone. 2000; 27 241-247
- 43 Reich K M, McAllister T N, Gudi S, Frangos J A. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology. 1997; 138 1014-1018
- 44 Rubin C, Turner A S, Mallinckrodt C, Jerome C, McLeod K, Bain S. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone. 2002 a; 30 445-452
- 45 Rubin C, Turner A S, Muller R, Mittra E, McLeod K, Lin W, Qin Y X. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res. 2002 b; 17 349-357
- 46 Ryder K D, Duncan R L. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res. 2001; 16 240-248
- 47 Sakai K, Mohtai M, Shida J, Hatimaya K, Benvenuti S, Brandi M L, Kukita T, Iwamoto Y. Fluid shear increases interleukin-11 expression in human osteoblast-like cells: its role in osteoclast induction. J Bone Miner Res. 1999; 14 2089-2098
- 48 Salazar E P, Rozengurt E. Src family kinases are required for integrin-mediated but not for G protein-coupled receptor stimulation of focal adhesion kinase autophosphorylation at Tyr-397. J Biol Chem. 2001; 276 17788-17795
- 49 Schmidt C, Pommerenke H, Dürr F, Nebe F, Rychly J. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem. 1998; 273 5081-5085
- 50 Schneider G B, Zaharias R, Stanford C. Osteoblast integrin adhesion and signaling regulate mineralization. J Dent Res. 2001; 80 1540-1544
- 51 Smalt R, Mitchell F, Howard R, Chambers T J. Mechanical strain versus wall shear stress as the stimulus to bone cells in mechanical loading. J Bone Miner Res. 1996; 11 S265-(Abstr.)
- 52 Srinivasan S, Weimer D A, Agans S C, Bain S D, Gross T S. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res. 2002; 17 1613-1620
- 53 Sun H B, Yokata H. Altered mRNA level of matrix metalloproteinase-13 in MH7 A synovial cells under mechanical loading and unloading. Bone. 2001; 28 399-403
- 54 Tang L Y, Cullen D M, Yee J A, Jee W SS, Kimmel D B. Prostaglandin E2 increases the skeletal response to mechanical loading. J Bone Miner Res. 1997; 12 276-282
- 55 Toma C D, Ashkar S, Gray M L, Schaffer J L, Gerstenfeld L C. Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res. 1997; 12 1626-1636
- 56 Vico L, Chappard D, Alexandre C, Palle S, Minaire P, Riffat G, Morukov B, Rakhmanov S. Effects of a 120 day period of bed-rest on bone mass and bone cell activities in man: attempts at countermeasure. Bone Miner. 1987; 5 383-394
- 57 Wadhwa S, Godwin S L, Peterson D R, Epstein M A, Raisz L G, Pilbeam C C. Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J Bone Miner Res. 2002; 17 266-274
- 58 Wary K K, Dans M, Mariotti A, Giancotti F G. Biochemical analysis of integrin-mediated Shc signaling. Methods Mol Biol. 1999; 129 35-49
- 59 Wennerberg K, Armulik A, Sakai T, Karlsson M, Fässler R, Schaefer E M, Mosher D F, Johansson S. The cytoplasmic tyrosines of integrin subunit beta1 are involved in focal adhesion kinase activation. Mol Cell Biol. 2000; 20 5758-5765
- 60 Zaman G, Pitsillides A A, Rawlinson S CF, Suswillo R FL, Mosley J R, Cheng M Z, Platts L AM, Hukkanen M, Polak J M, Lanyon L E. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res. 1999; 14 1123-1131
- 61 Zaman G, Suswillo R FL, Cheng M Z, Tavares L A, Lanyon L E. Early responses to dynamic strain change and prostaglandins in bone derived cells in culture. J Bone Miner Res. 1997; 12 769-777
Dr. Christian Kasperk
Ruprecht-Karls-University
Department of Medicine I/Endocrinology and Metabolism
Luisenstraße 5
69115 Heidelberg
Germany
Phone: + 496221568604
Fax: + 49 62 21 56 43 59
Email: Christian.Kasperk@med.uni-heidelberg.de