Subscribe to RSS
DOI: 10.1055/s-2004-825627
The Synthesis and Biological Evaluation of Novel Eunicellin Analogues
Publication History
Publication Date:
08 June 2004 (online)
Abstract
The intramolecular Diels-Alder reaction of a 2,9-disubstituted hexahydro-Δ5,6-oxonin derivative 14 afforded two diastereomeric tricyclic eunicellin analogues 15 and 16, which were desilylated to produce the alcohols 17 and 3; these were found to be microtubule stabilising agents with activity in the micromolar range.
Key words
eunicellin - cycloaddition - lactone - microtubules
- 1
Kennard O.Watson DG.Riva di Sanseverino L.Tursch B.Bosmans R.Djerassi C. Tetrahedron Lett. 1968, 2879 -
2a
Bernardelli P.Paquette LA. Heterocycles 1998, 49: 531 -
2b
Sung P.-J.Chen M.-C. Heterocycles 2002, 57: 1705 -
3a
MacMillan DWC.Overman LE. J. Am. Chem. Soc. 1995, 117: 10391 -
3b
Overman LE.Pennington LD. Org. Lett. 2000, 2: 2683 -
3c
MacMillan DWC.Overman LE.Pennington LD. J. Am. Chem. Soc. 2001, 123: 9033 -
3d
Gallou F.MacMillan DWC.Overman LE.Paquette LA.Pennington LD.Yang J. Org. Lett. 2001, 3: 135 -
3e
Corminboeuf O.Overman LE.Pennington LD. Org. Lett. 2003, 5: 1543 -
3f
Corminboeuf O.Overman LE.Pennington LD. J. Am. Chem. Soc. 2003, 125: 6650 -
4a
Paquette LA.Moradei OM.Bernadelli P.Lange T. Org. Lett. 2000, 2: 1875 -
4b
Friedrich D.Doskotch RW.Paquette LA. Org. Lett. 2000, 2: 1879 -
4c
Bernardelli P.Moradei OM.Friedrich D.Yang J.Gallou F.Dyck BP.Doskotch RW.Lange T.Paquette LA. J. Am. Chem. Soc. 2001, 123: 9021 -
4d
Friedrich D.Paquette LA. J. Nat. Prod. 2002, 65: 126 - 5
Molander GA.St Jean DJ.Haas J. J. Am. Chem. Soc. 2004, 126: 1642 - 6
Xu Q.Weeresakare M.Rainier JD. Tetrahedron 2001, 57: 8029 -
7a
Jung ME.Pontillo J. J. Org. Chem. 2002, 67: 6848 -
7b
Jung ME.Pontillo J. Tetrahedron 2003, 59: 2729 - 8
Chai Y.Vicic DA.McIntosh MC. Org. Lett. 2003, 5: 1039 - 9
Congreve MS.Holmes AB.Hughes AB.Looney MG. J. Am. Chem. Soc. 1993, 115: 5815 - 10
Anderson EA.Davidson JEP.Harrison JR.O’Sullivan PT.Burton JW.Collins I.Holmes AB. Tetrahedron 2002, 58: 1943 - 11
Petasis NA.Bzowej EI. J. Am. Chem. Soc. 1990, 112: 6392 - 12
Burton JW.Clark JS.Derrer S.Stork TC.Bendall JG.Holmes AB. J. Am. Chem. Soc. 1997, 119: 7483 - 13
Carling RW.Clark JS.Holmes AB. J. Chem. Soc., Perkin Trans. 1 1992, 83 - 14
Griffith WP.Ley SV.Whitcombe GP.White AD. Chem. Commun. 1987, 1625 - 17
Sheldrake GM. SHELXS-97/SHELXL-97 University of Göttingen; Germany: 1997. - 18
Beumer R.Bayón P.Bugada P.Ducki S.Mongelli N.Sirtori FR.Telser J.Gennari C. Tetrahedron 2003, 59: 8803
References
Wittig Elaboration of 13 and Intramolecular Cycloaddition of 14 to Give 15 and 16. To a stirred solution of the aldehyde 13 (93 mg, 0.2 mmol) in toluene (15 mL) was added 1-triphenylphosphoranylidene-2-propanone (187 mg, 0.59 mmol). The resultant mixture was heated to reflux for 2 h 15 min, and then allowed to cool to ambient temperature. The solvent was removed in vacuo and purification by flash chromatography (CH2Cl2) yielded the title compounds 15 (64 mg, 63%) and 16 (21.4 mg, 21%) as colourless oils.
Data for 15: Rf = 0.41 (CH2Cl2); [a]D
25 -24.6 (c 0.65 in CHCl3). IR (CHCl3): nmax = 3022 (w), 3019 (m), 2932 (s), 2859 (m), 1713 (s) (CO), 1473 (m), 1428 (m), 1358 (m), 1111 (s), 1089 (m), 1043 (s), 1021 (m), 943 (w), 823 (m), 610 (w) cm-1. 1H NMR (500 MHz, CDCl3): d = 7.64-7.71 (4 H, m, Ar), 7.33-7.44 (6 H, m, Ar), 5.55-5.64 (1 H, m, H-6), 5.30-5.50 (1 H, br s, H-5), 5.20-5.24 (1 H, m, H-12), 4.65 (1 H, dd, J = 8.4 and 1.1 Hz, H-2), 3.95-4.03 (1 H, m, H-9), 3.48 (1 H, d, J = 8.4 Hz, H-3), 2.72-2.81 (1 H, m, H-10), 2.54 (1 H, dt, J = 11.0 and 6.8 Hz, H-14), 2.10-2.47 (4 H, m, H-1, H-4, H-13 and H-7), 2.02-2.11 (2 H, m, H-4 and H-8), 1.87-1.96 (1 H, m, H-13), 1.79 (3 H, s, CH3CO), 1.67-1.75 (1 H, m, H-8), 1.66 (3 H, s, CH3C=C) and 1.04 [9 H, s, C(CH3)3]. 13C NMR (62.5 MHz, CDCl3): d = 209.2 (C=O), 136.0, 136.0, 134.8, 134.6, 130.9, 129.5, 129.5, 127.6 and 127.47 (Ar), 133.7 (C-11), 130.9 (C-6), 127.3 (C-5), 120.5 (C-12), 84.6 (C-2), 80.4 (C-9), 71.8 (C-3), 48.9 (C-14), 45.9 (C-1), 43.6 (C-10), 31.9 (C-4), 30.8 (C-13), 27.8 (CH3CO), 27.5 (C-8), 27.0 [C(CH3)3], 21.4 (C-7), 21.2 (CH3C=C) and 19.2 [C(CH3)3]. MS (EI): m/z (%) = 514 (20) [M+], 491 (15), 472 (10), 457 (100) [M - t-Bu]+, 215 (10), 199 (85), 135 (40) and 77 (20). C33H42O3Si requires [M]: 514.2903; found [M+]: 514.2884.
Data for 16: Rf = 0.55 (CH2Cl2), [a]D
25 +0.8 (c 0.76 in CHCl3). IR (CHCl3): nmax = 2931 (s), 2859 (s), 1709 (s) (CO), 1472 (w), 1428 (m), 1170 (w), 1112 (s), 1071 (s), 999 (w), 824 (m), 612 (m) cm-1. 1H NMR (500 MHz, CDCl3):
d = 7.68-7.73 (4 H, m, Ar), 7.34-7.45 (6 H, m, Ar), 5.51-5.59 (1 H, m, H-6), 5.40-5.50 (1 H, m, H-5), 5.31 (1 H, br s, H-12), 4.03 (1 H, t, J = 6.2 Hz, H-9), 3.84 (1 H, d, J = 5.8 Hz, H-2), 3.78 (1 H, dd, J = 9.0 and 2.9 Hz, H-3), 2.38-2.73 (4 H, m, H-4, H-10, H-7 and H-1), 2.20-2.28 (1 H, m, H-4), 2.07-2.20 (2 H, m, H-7 and H-8), 1.96-2.05 (1 H, m, H-13), 1.94 (3 H, s, CH3CO), 1.84-1.92 (2 H, m, H-14 and H-13), 1.58-2.66 (1 H, m, H-8), 1.59 (3 H, s, CH3C=C) and 1.07
[9 H, s, C(CH3)3]. 13C NMR (62.5 MHz, CDCl3): d = 210.2 (C=O), 136.1, 136.0, 135.5, 130.8 and 127.5 (Ar), 134.1
(C-11), 129.6 (C-6), 126.4 (C-5), 118.7 (C-12), 90.3 (C-2), 84.5 (C-9), 74.1 (C-3), 48.5 (C-14), 45.5 (C-10), 41.5 (C-1), 31.2 (C-8), 30.6 (C-4), 28.7 (CH3CO), 27.1 [C(CH3)3], 25.2 (C-13), 22.7 (CH3C=C), 21.7 (C-7) and 19.3 [C(CH3)3]. MS (CI, NH3): m/z (%) = 532 (10) [M + NH4]+, 515 (2) [M + H]+, 437 (15), 259 (100). C33H46NO3Si requires [M]: 532. 3247. Found [M + NH4]+: 532.325.
Crystal data for 17: C17H24O3, M = 276.36, trigonal, space group P31, (no. 144), a = b = 10.041 (3), c = 12.585 (5) Å, α = β = 90ο, γ = 120ο, U = 1098.8 (6) Å3, Z = 3, µ(MoKα) = 0.084 mm-1, 1450 reflections measured at 150 (2) K using an Oxford Cryosystems Cryostream cooling apparatus, 1332 unique (R int = 0.039); R 1 = 0.073, wR 2 = 0.189 [I>2σ(I)]; goodness-of-fit on F 2, S = 1.030. The structure was solved with SHELXS-97 and refined with SHELXL-97 [17] (CCDB 233639).
19Microtubules did not depolymerise at 10 °C.