Subscribe to RSS
DOI: 10.1055/s-2004-830892
Functionalization of 2-Alkylidenetetrahydrofurans and 2-Alkylidenepyrrolidines by Palladium(0)-Catalyzed Cross-Coupling Reactions
Publication History
Publication Date:
05 August 2004 (online)
Abstract
2-Alkylidenetetrahydrofurans and 2-alkylidenepyrrolidines were efficiently functionalized by bromination of the exocyclic double bond and subsequent palladium-catalyzed cross-coupling reactions.
Key words
bromination - cross-coupling - palladium - pyrrolidines - tetrahydrofurans
- For cycloadditions, see:
-
1a
Weichert A.Hoffmann HMR. J. Org. Chem. 1991, 56: 4098 -
1b
Tchelitcheff P. Bull. Soc. Chim. Fr. 1954, 672 -
1c
Ireland RE.Haebich D. Chem. Ber. 1981, 114: 1418 -
1d
Audrain H.Thorhauge J.Hazell RG.Joergensen KA. J. Org. Chem. 2000, 65: 4487 -
1e For reactions with amines, see:
Detty MR. J. Org. Chem. 1979, 44: 2073 -
1f
Batra S.Srivastava S.Singh K.Chander R.Khanna AK.Bhaduri AP. Bioorg. Med. Chem. 2000, 8: 2195 -
1g For cyclopropanations, see:
Kirmse W.Rode K. Chem. Ber. 1987, 120: 847 -
1h For hydrogenations, see:
Ohta T.Miyake T.Seido N.Kumobayashi H.Takaya H. J. Org. Chem. 1995, 60: 357 ; see also ref. - 2
Langer P.Armbrust H.Eckardt T.Magull J. Chem.-Eur. J. 2002, 8: 1443 ; and references cited therein - 3
Langer P.Freifeld I. Chem. Commun. 2002, 2668 ; and references cited therein -
4a
Bertschy H.Meunier A.Neier R. Angew. Chem., Int. Ed. Engl. 1990, 29: 777 -
4b
Montforts F.-P.Schwartz UM.Mai G. Liebigs Ann. Chem. 1990, 1037 -
4c
Lygo B. Synlett 1993, 765 - Reviews:
-
5a
Oivin TLB. Tetrahedron 1987, 43: 3309 -
5b
Barrett AGM.Sheth HG. J. Org. Chem. 1983, 48: 5017 -
5c
Rao YS. Chem. Rev. 1976, 76: 625 -
5d
Pattenden G. Prog. Chem. Nat. Prod. 1978, 35: 133 -
5e
Knight DW. Contemp. Org. Synth. 1994, 1: 287 -
5f
Gerlach H.Wetter H. Helv. Chim. Acta 1974, 57: 2306 -
5g
Schmidt U.Gombos J.Haslinger E.Zak H. Chem. Ber. 1976, 109: 2628 -
5h
Bartlett PA.Meadows JD.Ottow E. J. Am. Chem. Soc. 1984, 106: 5304 -
5i
Lygo B. Tetrahedron 1988, 44: 6889 -
6a
Ley SV.Lygo B.Organ HM.Wonnacott A. Tetrahedron 1985, 41: 3825 -
6b
Booth PM.Fox CMJ.Ley SV. J. Chem. Soc., Perkin Trans. 1 1987, 121 -
6c
Mori K.Sasaki M.Tamada S.Suguro T.Masuda S. Tetrahedron 1979, 35: 1601 -
7a
Langer P.Bellur E. J. Org. Chem. 2003, 68: 9742 -
7b See also:
Edwards GL.Sinclair DJ. Tetrahedron Lett. 1999, 40: 3933 - 8
Krafft GA.Katzenellenbogen JA. J. Am. Chem. Soc. 1981, 103: 5459 - 9
Langer P.Holtz E.Karimé I.Saleh NNR. J. Org. Chem. 2001, 66: 6057 - 12
Akermark B. Acta Chem. Scand. 1961, 15: 1695 - 13 The 2,3¢-bifuranylidene subunit is present in the natural products charlic acid, charolic acid and terrestric acid:
Arai H.Miyajima H.Mushiroda T.Yamamoto Y. Chem. Pharm. Bull. 1989, 12: 3229 - 14 For the synthesis of 8, see:
Lambert PH.Vaultier M.Carrié R. J. Org. Chem. 1985, 50: 5352
References
Typical Experimental Procedure for 3a: N-Bromo-succinimide (0.879 g, 4.9 mmol) was added to a CCl4 solution (40 mL) of 2a (0.700 g, 3.8 mmol) at r.t. The reaction mixture was stirred under reflux for 3 h. The reaction mixture was allowed to cool to r.t. and Et2O (20 mL) was added. The solution was filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n-hexane-EtOAc, 100:1 to 1:1) to give 3a as a colorless solid (0.732 g, 73%). 1H NMR (300 MHz, CDCl3): δ = 1.51 (s, 9 H, Ot-Bu), 2.21 (quint, J = 7.2 Hz, 2 H, CH2), 3.13 (t, J = 7.8 Hz, 2 H, CH2), 4.37 (t, J = 7.2 Hz, 2 H, OCH2). 13C NMR (150 MHz, CDCl3): δ = 25.10 (CH2), 28.46 (CH3), 32.54 (CH2), 72.83 (C-5), 81.65 (C), 85.80 (Br-C=C), 163.38 (O=C-O), 170.80 (O-C=C). IR (KBr): ν = 2975 (w, C-H), 1694 (s, C=C-O), 1613 (s, C=C-C=O), 1370 (m), 1295 (s), 1250 (w), 1243 (w), 1210 (m), 1170 (s), 1067 (s), 1039 (w), 1023 (w), 955 (w), 934 (w), 864 (w). MS (EI, 70 eV): m/z (%) = 263 (19)[M+], 206 (100), 190 (92), 162 (4) cm-1. The exact molecular mass m/z = 262.0205 ± 2 mD [M+] for C10H15O3Br was confirmed by HRMS (EI, 70 eV). Anal. Calcd for C10H15O3Br (263.131): C, 45.65; H, 5.75. Found: C, 45.38; H, 6.03. All products gave satisfactory spectroscopic and analytical and/or high-resolution mass data.
11Typical Experimental Procedure for 4a: Tetrakis(triphenylphosphine)palladium (0.20 g, 0.017 mmol) was added to a 1,4-dioxane solution (5 mL) of 3a (0.150 g, 0.57 mmol), K3PO4 (0.726 g, 3.42 mmol) and phenylboronic acid (0.209 g, 1.71 mmol) at r.t. The reaction mixture was stirred under reflux for 6 h. The solution was allowed to cool to r.t. and a sat. solution of NH4Cl (20 mL) was added. The solution was extracted with Et2O (4 × 30 mL). The combined organic layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, n-hexane-EtOAc = 100:1 to 25:1) to give 4a as a slightly yellow solid (0.128 g, 87%). 1H NMR (300 MHz, CDCl3): δ = 1.44 (s, 9 H, Ot-Bu), 2.11 (quint, J = 7.2 Hz, 2 H, CH2), 3.21 (t, J = 7.8 Hz, 2 H, CH2), 4.17 (t, J = 6.9 Hz, 2 H, OCH2), 7.20-7.34 (m, 5 H, Ph). 13C NMR (75 MHz, CDCl3): δ = 24.36 (CH2), 28.46 (CH3), 31.74 (CH2), 71.92 (C-5), 79.83 (C), 106.37 (C=C-O), 126.35, 127.60, 130.60 (CH, Ph), 136.18 (C, Ph), 167.92 (O=C-O), 170.73 (O-C=O). IR (neat): ν = 3079 (w), 2974 (m), 2921 (w), 2907 (w, C-H), 1687 (s, C=C-O), 1608 (s, C=C-C=O), 1492 (m), 1474 (m), 1452 (m), 1420 (w), 1384 (m), 1368 (m), 1321 (m), 1301 (m), 1269 (m), 1251 (m), 1231 (m), 1157 (s), 1113 (m), 1063 (s), 1038 (s), 956 (m), 930 (m), 880 (w), 839 (m), 812 (m), 778 (m), 756 (m), 697 (m), 654 (w), 508 (w) cm-1. MS (EI, 70 eV): m/z (%) = 260 (23) [M+], 203 (100), 186 (79), 169 (4), 157 (1). The exact molecular mass m/z = 260.1412 ± 2 mD [M+] for C16H20O3 was confirmed by HRMS (EI, 70 eV).