References
<A NAME="RS06104ST-1A">1a</A>
Pettit GR.
Cichacz ZA.
Gao F.
Herald CL.
Boyd MR.
Schmidt JM.
Hooper JNA.
J. Org. Chem.
1993,
58:
1302
<A NAME="RS06104ST-1B">1b</A>
Pettit GR.
Cichacz ZA.
Gao F.
Herald CL.
Boyd MR.
J. Chem. Soc., Chem. Commun.
1993,
1166
<A NAME="RS06104ST-1C">1c</A>
Pettit GR.
Herald CL.
Cichacz ZA.
Gao F.
Boyd MR.
Christie ND.
Schmidt JM.
Nat. Prod. Lett.
1993,
3:
239
<A NAME="RS06104ST-1D">1d</A>
Pettit GR.
Herald CL.
Cichacz ZA.
Gao F.
Schmidt JM.
Boyd MR.
Christie ND.
Boettner FE.
J. Chem. Soc., Chem. Commun.
1993,
1805
<A NAME="RS06104ST-1E">1e</A>
Pettit GR.
Cichacz ZA.
Herald CL.
Gao F.
Boyd MR.
Schmidt JM.
Hamel E.
Bai R.
J. Chem. Soc., Chem. Commun.
1994,
1605
<A NAME="RS06104ST-2A">2a</A>
Kobayashi M.
Aoki S.
Sakai H.
Kawazon K.
Kihara N.
Sasaki T.
Kitagawa I.
Tetrahedron Lett.
1993,
34:
1993
<A NAME="RS06104ST-2B">2b</A>
Kobayashi M.
Aoki S.
Sakai H.
Kawazon K.
Kihara N.
Sasaki T.
Kitagawa I.
Chem. Pharm. Bull.
1993,
41:
989
<A NAME="RS06104ST-2C">2c</A>
Kobayashi M.
Aoki S.
Kitagawa I.
Tetrahedron Lett.
1994,
35:
1243
<A NAME="RS06104ST-3">3</A>
Fusetanai N.
Shinoda K.
Matsunaga S.
J. Am. Chem. Soc.
1993,
115:
3977
<A NAME="RS06104ST-4">4</A>
Pettit GR.
J. Nat. Prod.
1996,
59:
812
<A NAME="RS06104ST-5A">5a</A>
Evans DA.
Coleman PJ.
Dias LC.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2738
<A NAME="RS06104ST-5B">5b</A>
Evans DA.
Trotter BW.
Côté B.
Coleman PJ.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2741
<A NAME="RS06104ST-5C">5c</A>
Evans DA.
Trotter BW.
Côté B.
Coleman PJ.
Dias LC.
Tyler AN.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2744
<A NAME="RS06104ST-5D">5d</A>
Evans DA.
Trotter BW.
Coleman PJ.
Côté B.
Dias LC.
Rajapakse HA.
Tyler AN.
Tetrahedron
1999,
55:
8671
<A NAME="RS06104ST-6A">6a</A>
Guo J.
Duffy KJ.
Stevens KL.
Dalko PI.
Roth RM.
Hayward MM.
Kishi Y.
Angew. Chem. Int. Ed.
1998,
37:
187
<A NAME="RS06104ST-6B">6b</A>
Hayward MM.
Roth RM.
Duffy KJ.
Dalko PI.
Stevens KL.
Guo J.
Kishi Y.
Angew. Chem. Int. Ed.
1998,
37:
192
<A NAME="RS06104ST-7A">7a</A>
Smith ABIII.
Zhuang L.
Brook CS.
Lin Q.
Moser WH.
Trout REL.
Boldi AM.
Tetrahedron Lett.
1997,
38:
8671
<A NAME="RS06104ST-7B">7b</A>
Smith AB.
Doughty VA.
Lin Q.
Zhuang L.
McBriar MD.
Boldi AM.
Moser WH.
Murase N.
Nakayama K.
Sobukawa M.
Angew. Chem. Int. Ed.
2001,
40:
191
<A NAME="RS06104ST-7C">7c</A>
Smith AB.
Lin Q.
Doughty VA.
Zhuang L.
McBriar MD.
Kerns JK.
Brook CS.
Murase N.
Nakayama K.
Angew. Chem. Int. Ed.
2001,
40:
196
<A NAME="RS06104ST-7D">7d</A>
Smith AB.
Doughty VA.
Sfouggatakis C.
Bennett CS.
Koyanagi J.
Takeuchi M.
Org. Lett.
2002,
4:
783
<A NAME="RS06104ST-7E">7e</A>
Smith AB.
Zhu W.
Shirakami S.
Sfouggatakis C.
Doughty VA.
Bennett CS.
Sakamoto Y.
Org. Lett.
2003,
5:
761
<A NAME="RS06104ST-8A">8a</A>
Paterson I.
Oballa RM.
Norcross RD.
Tetrahedron Lett.
1996,
37:
8581
<A NAME="RS06104ST-8B">8b</A>
Paterson I.
Gibson KR.
Oballa RM.
Tetrahedron Lett.
1996,
37:
8585
<A NAME="RS06104ST-8C">8c</A>
Paterson I.
Keown LE.
Tetrahedron Lett.
1997,
38:
5727
<A NAME="RS06104ST-8D">8d</A>
Paterson I.
Oballa RM.
Tetrahedron Lett.
1997,
38:
8241
<A NAME="RS06104ST-8E">8e</A>
Paterson I.
Wallace DJ.
Gibson KR.
Tetrahedron Lett.
1997,
38:
8911
<A NAME="RS06104ST-8F">8f</A>
Paterson I.
Chen DY.-K.
Coster MJ.
Aceña JL.
Bach J.
Gibson KR.
Keown LE.
Oballa RM.
Trieselmann T.
Wallace DJ.
Hodgson AP.
Norcross RD.
Angew. Chem. Int. Ed.
2001,
40:
4055
<A NAME="RS06104ST-9A">9a</A>
Crimmins MT.
Washburn DG.
Tetrahedron Lett.
1998,
39:
7487
<A NAME="RS06104ST-9B">9b</A>
Crimmins MT.
Katz JD.
McAtee LC.
Tabet EA.
Kirincich SJ.
Org. Lett.
2001,
3:
949
<A NAME="RS06104ST-9C">9c</A>
Crimmins MT.
Katz JD.
Org. Lett.
2000,
2:
957
<A NAME="RS06104ST-9D">9d</A>
Crimmins MT.
Katz JD.
Washburn DG.
Allwein SP.
McAtee LF.
J. Am. Chem. Soc.
2002,
124:
5661
<A NAME="RS06104ST-10A">10a</A>
Hubbs JL.
Heathcock CH.
J. Am. Chem. Soc.
2003,
125:
12836
<A NAME="RS06104ST-10B">10b</A>
Heathcock CH.
McLaughlin M.
Medina J.
Hubbs JL.
Wallace GA.
Scott R.
Claffey MM.
Hayes CJ.
Ott GR.
J. Am. Chem. Soc.
2003,
125:
12844
<A NAME="RS06104ST-10C">10c</A>
Wallace GA.
Scott RW.
Heathcock CH.
J. Org. Chem.
2000,
65:
4145
<A NAME="RS06104ST-10D">10d</A>
Claffey MM.
Hayes CJ.
Heathcock CH.
J. Org. Chem.
1999,
64:
8267
For a comprehensive list of leading references to synthetic approaches from other
laboratories, see the references cited in ref.10a and the following:
<A NAME="RS06104ST-11A">11a</A>
Zuev D.
Paquette LA.
Org. Lett.
2000,
2:
679
<A NAME="RS06104ST-11B">11b</A>
Terauchi T.
Nakata M.
Tetrahedron Lett.
1998,
39:
3795
<A NAME="RS06104ST-11C">11c</A>
Lemaire-Audoire S.
Vogel P.
Tetrahedron Lett.
1998,
39:
1345
<A NAME="RS06104ST-11D">11d</A>
Lemaire-Audoire S.
Vogel P.
J. Org. Chem.
2000,
65:
3346
<A NAME="RS06104ST-11E">11e</A>
Zemribo R.
Mead KT.
Tetrahedron Lett.
1998,
39:
3895
<A NAME="RS06104ST-11F">11f</A>
Fernandez-Megia E.
Gourlaouen N.
Ley SV.
Rowlands GJ.
Synlett
1998,
991
<A NAME="RS06104ST-11G">11g</A>
Gaunt MJ.
Hook DF.
Tanner HR.
Ley SV.
Org. Lett.
2003,
5:
4815
<A NAME="RS06104ST-11H">11h</A>
Gaunt MJ.
Jessiman AS.
Orsini P.
Tanner HR.
Hook DF.
Ley SV.
Org. Lett.
2003,
5:
4819
<A NAME="RS06104ST-11I">11i</A>
Micalizio GC.
Pinchuk AN.
Roush WR.
J. Org. Chem.
2000,
65:
8730
<A NAME="RS06104ST-11J">11j</A>
Anderson JC.
McDermott BP.
Tetrahedron Lett.
1999,
40:
7135
<A NAME="RS06104ST-11K">11k</A>
Samadi M.
Munoz-Letelier C.
Poigny S.
Guyot M.
Tetrahedron Lett.
2000,
41:
3349
<A NAME="RS06104ST-11L">11l</A>
Terauchi T.
Terauchi T.
Sato I.
Tsukada T.
Kanoh N.
Nakata M.
Tetrahedron Lett.
2000,
41:
2649
<A NAME="RS06104ST-11M">11m</A>
Kary PD.
Roberts SM.
Tetrahedron: Asymmetry
1999,
10:
217
<A NAME="RS06104ST-11N">11n</A>
Kim H.
Hoffmann MR.
Eur. J. Org. Chem.
2000,
2195
<A NAME="RS06104ST-11O">11o</A>
Barrett AGM.
Braddock DC.
de Koning PD.
White AJP.
Williams DJ.
J. Org. Chem.
2000,
65:
375
<A NAME="RS06104ST-11P">11p</A>
Holson EB.
Roush WR.
Org. Lett.
2002,
4:
3719
<A NAME="RS06104ST-11Q">11q</A>
Holson EB.
Roush WR.
Org. Lett.
2002,
4:
3723
<A NAME="RS06104ST-12">12</A>
Lau CK.
Zakrewski P.
Synlett
2003,
2:
215
<A NAME="RS06104ST-13">13</A>
Physical data of 6: [α]D
25 -16.5 (c 1.79, CHCl3). 1H NMR (500 MHz, acetone-d
6): δ = 7.31 (d, 2 H, J = 8.7 Hz), 6.90 (d, 2 H, J = 8.7 Hz), 4.58 (d, 1 H, J = 11.1 Hz), 4.42 (d, 1 H, J = 11.2 Hz), 4.07-4.01 (m, 1 H), 3.78 (s, 3 H), 3.74-3.66 (m, 2 H), 3.56-3.52 (m,
1 H), 3.41-3.39 (m, 2 H), 1.87-1.81 (m, 1 H), 1.77-1.69 (m, 2 H), 1.65-1.58 (m, 1
H), 0.88 (s, 18 H), 0.08 (s, 6 H), 0.05 (s, 6 H). 13C NMR (100 MHz, acetone-d
6): δ = 170.5, 141.6, 140.4, 124.7, 85.1, 81.3, 77.5, 70.6, 65.7, 53.8, 51.2, 36.5,
28.9, 28.8, 22.3, 6.1, 5.9, 5.1. HRMS: m/z calcd for C26H48O4Si2I: for [M - H] 607.2136. Found: 607.2138.
<A NAME="RS06104ST-14">14</A>
Physical data of 7: [α]D
25 -0.9 (c 4.47, CHCl3). 1H NMR (500 MHz, acetone-d
6): δ = 7.28 (d, 2 H, J = 8.6 Hz), 6.92 (d, 2 H, J = 8.6 Hz), 4.42 (q, 2 H, J = 9.6 Hz), 4.12-4.06 (m, 1 H), 3.94-3.87 (m, 1 H), 3.80 (s, 3 H), 3.58-3.48 (m, 2
H), 3.26 (dd, 1 H, J = 4.8, 10.1 Hz), 3.17 (dd, 1 H, J = 6.4, 10.2 Hz), 1.82-1.74 (m, 1 H), 1.71 (q, 2 H, J = 6.2 Hz), 1.43 (s, 3 H), 1.32 (s, 3 H), 1.10 (q, 1 H, J = 11.8 Hz). 13C NMR (100 MHz, acetone-d
6): δ = 164.3, 136.1, 134.2, 118.7, 103.9, 77.2, 74.1, 70.9, 70.7, 59.8, 41.9, 41.5,
34.6, 24.5, 15.2.
<A NAME="RS06104ST-15">15</A>
Physical data of 25: [α]D
25 -7.3 (c 3.75, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.27 (m, 4 H), 6.91 (m, 4 H), 4.46 (d, 2 H, J = 11.0 Hz), 4.42 (d, 2 H, J = 10.6 Hz), 4.39-4.34 (m, 1 H), 4.08-4.02 (m, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H),
3.78-3.70 (m, 2 H), 3.55-3.47 (m, 2 H), 2.69-2.61 (m, 2 H), 2.48 (dd, 1 H, J = 5.0, 15.6 Hz), 1.83-1.76 (m, 2 H), 1.68-1.58 (m, 6 H), 1.42 (s, 3 H), 1.27 (s,
3 H), 1.09 (m, 1 H), 0.94 (s, 9 H), 0.91 (s, 9 H), 0.10 (m, 6 H), 0.08 (s, 6 H). 13C NMR (100 MHz, acetone-d
6): δ = 206.91, 159.61, 131.46, 131.43, 129.52, 129.40, 113.92, 113.86, 98.57, 72.80,
72.46, 70.95, 66.89, 66.28, 66.13, 65.99, 59.86, 55.00, 50.38, 48.83, 43.18, 40.52,
37.23, 37.00, 25.86, 19.60, 18.31, 18.10, -4.55, -4.77, -5.56, -5.58. HRMS: m/z calcd for C44H74O9Si2K: for [M + K+] 841.4508. Found: 841.4505.
<A NAME="RS06104ST-16">16</A>
Physical data of 26: [α]D
25 -67.4 (c 6.5, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.36 (d, 2 H, J = 8.5 Hz), 7.17 (d, 2 H, J = 8.5 Hz), 6.92 (d, 2 H, J = 8.6 Hz), 6.88 (d, 2 H, J = 8.6 Hz), 4.61 (d, 1 H, J = 11.1 Hz), 4.43 (d, 1 H, J = 11.1 Hz), 4.27 (d, 1 H, J = 11.4 Hz), 4.16 (d, 1 H, J = 11.4 Hz), 4.13-4.08 (m, 1 H, H3), 4.07-4.03 (m, 1 H, H11), 3.90 (br s, 1 H), 3.79
(s, 3 H), 3.77 (s, 3 H), 3.72-3.68 (m, 1 H), 3.66-3.60 (m, 2 H), 3.54-3.50 (m, 1 H),
2.54 (d, 1 H, J = 14.1 Hz, H8ax), 2.34 (d, 1 H, J = 8.5 Hz, H6ax), 2.29-2.23 (m, 3 H), 1.89 (d, 1 H, J = 13.9 Hz, H4ax), 1.84-1.80 (m, 2 H), 1.62-1.55 (m, 3 H), 1.52-1.46 (m, 1 H, H4eq), 0.89 (s, 9 H), 0.03 (s, 6 H). 13C NMR (150 MHz, acetone-d
6): δ = 204.78, 159.89, 159.35, 132.36, 129.66, 129.24, 128.96, 113.64, 113.63, 99.82,
72.51, 70.88, 69.66, 66.61, 66.15, 62.44, 59.88, 54.89, 54.86, 52.24, 46.94, 38.97,
36.17, 36.13, 35.74, 25.84, 18.20, -5.67. The stereochemistry of AB spiroketal was
determined by 2D-COSY and NOESY experiments. NOEs were observed between H6ax and H8ax, H6eq and H8eq as well as H3ax and H11ax which were consistent with the proposed spiroketal junction reported in the literature.
HRMS: m/z calcd for C35H52O8SiK: for [M + K+] 667.3069. Found: 667.3066.
<A NAME="RS06104ST-17">17</A>
Physical data of 2a: [α]D
25 -50.0 (c 1.2, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.33 (d, 2 H, J = 8.5 Hz), 7.17 (d, 2 H, J = 8.4 Hz), 6.89 (dd, 4 H, J = 8.6, 11.4 Hz), 4.56 (d, 1 H, J = 11.1 Hz), 4.38 (d, 1 H, J = 11.1 Hz), 4.28 (d, 1 H, J = 11.4 Hz), 4.23-4.15 (m, 3 H), 4.01 (t, 1 H, J = 10.5 Hz), 3.85 (s, 1 H), 3.79 (s,
3 H), 3.76 (s, 3 H), 3.76-3.73 (m, 1 H), 3.71-3.61 (m, 2 H), 3.53-3.47 (m, 1 H), 2.11
(s, 1 H, H6), 1.89 (d, 1 H, J = 12.6 Hz, H4), 1.75-1.65 (m, 5 H), 1.56-1.49 (m, 4 H), 1.29 (t, 1 H, J = 12.3 Hz, H10), 1.10 (s, 3 H, CH3), 0.90 (s, 9 H), 0.06 (s, 6 H). 13C NMR (150 MHz, acetone-d
6): δ = 160.48, 160.44, 132.35, 132.31, 129.14, 129.04, 113.95, 113.91, 98.56, 72.30,
70.90, 69.63, 69.16, 66.85, 62.94, 62.81, 60.41, 54.85, 54.83, 46.45, 44.53, 39.18,
37.00, 36.04, 29.95, 25.79, 18.15, -5.18. The stereochemistry of the axial C9-OH was
determined by 2D-COSY and NOESY experiments. NOE was observed between H11ax and C9-OH, CH3 and H8eq as well as CH3 and H10eq. HRMS: m/z calcd for C36H56O8SiK: for [M + K+] 683.3382. Found: 683.3382. Physical data of 2b: [α]D
25
-46.0 (c 0.43, CH2Cl2). 1H NMR (500 MHz, acetone-d
6):
δ = 7.33 (d, 2 H, J = 8.6 Hz), 7.18 (d, 2 H, J = 8.6 Hz),
6.89-6.87 (m, 4 H), 4.56 (d, 1 H, J = 11.1 Hz), 4.36 (d, 1 H, J = 11.1 Hz), 4.29 (d, 1 H, J = 11.5 Hz), 4.18 (d, 1 H, J = 11.5 Hz), 4.11-4.05 (m, 1 H, H3), 3.85-3.81 (m, 2 H), 3.79 (s, 3 H), 3.76 (s, 3
H), 3.73-3.67 (m, 2 H), 3.64-3.58 (m, 1 H), 3.51-3.47 (m, 2 H), 2.10-2.08 (m, 1 H,
H6), 1.86-1.82 (m, 1 H, H4), 1.74-1.59 (m, 6 H), 1.53-1.45 (m, 3 H), 1.41 (s, 3 H,
CH3), 1.38-1.31 (m, 1 H, H10), 0.90 (s, 9 H), 0.05 (s, 6 H). 13C NMR (150 MHz, acetone-d
6): δ = 159.60, 159.54, 131.60, 131.48, 129.71, 129.65, 114.06, 113.99, 97.71, 72.23,
71.10, 69.63, 67.16, 64.80, 61.92, 60.63, 54.83, 54.82, 49.75, 46.32, 39.71, 37.69,
36.54, 36.12, 29.14, 26.10, 18.16, -5.18. NOEs were observed between H11ax and CH3, H8eq and CH3 as well as H3ax and H11ax which were consistent with the spiroketal structure with the equatorial C9-OH. HRMS:
m/z calcd for C36H56O8SiNa: for [M + Na+] 667.3642. Found: 667.3638.
<A NAME="RS06104ST-18">18</A>
Physical data of 12: [α]D
25 -2.53 (c 4.5, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 4.17-4.11 (m, 1 H), 3.75 (t, 2 H, J = 6.3 Hz), 2.98-2.96 (m, 1 H), 2.72 (t, 1 H, J = 4.6 Hz), 2.44 (dd, 1 H, J = 2.5, 5.2 Hz), 1.77-1.71 (m, 2 H), 1.71-1.61 (m, 2 H), 0.95 (s, 9 H), 0.92 (s, 9
H), 0.14 (m, 6 H), 0.09 (s, 6 H). 13C NMR (100 MHz, acetone-d
6): δ = 67.81, 59.66, 49.26, 46.92, 41.19, 41.03, 25.83, 25.80, 18.28, 18.11,
-4.80, -4.88, -5.62. HRMS: m/z calcd for C18H41O3Si2: for [M + H+] 361.2594. Found: 361.2593.
<A NAME="RS06104ST-19">19</A>
Physical data of 34: [α]D
25 -19.3 (c 0.15, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.28 (d, 2 H, J = 8.5 Hz), 6.92 (d, 2 H, J = 8.5 Hz), 4.43-4.36 (m, 3 H), 4.10-4.05 (m, 2 H), 3.89-3.83 (m, 1 H), 3.80 (s, 3
H), 3.77-3.71 (m, 2 H), 3.56-3.48 (m, 2 H), 3.28 (s, 3 H), 2.82-2.78 (m, 1 H), 2.63
(dd, 1 H, J = 7.5, 15.9 Hz), 2.56-2.46 (m, 2 H), 1.72-1.66 (m, 5 H), 1.62-1.58 (m, 1 H), 1.55-1.49
(m, 1 H), 1.44 (s, 3 H), 1.28 (s, 3 H), 1.13-1.05 (m, 1 H), 0.96 (s, 9 H), 0.92 (s,
9 H), 0.13 (s, 6 H), 0.08 (s, 6 H). 13C NMR (100 MHz, acetone-d
6): δ = 206.62, 159.62, 131.43, 129.39, 113.92, 98.57, 74.04, 72.45, 67.11, 66.29,
66.01, 65.98, 59.67, 55.82, 54.99, 50.23, 48.15, 43.15, 41.48, 37.22, 37.00, 25.90,
25.81, 19.59, 18.27, 18.15, -4.48, -4.71, -5.64. HRMS: m/z calcd for C37H68O8Si2K: for [M + K+] 735.4090. Found: 735.4087.
<A NAME="RS06104ST-20">20</A>
Physical data of 9: [α]D
25 -26.8 (c 0.67, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.31 (d, 2 H, J = 8.5 Hz), 6.91 (d, 2 H, J = 8.5 Hz), 4.59-4.53 (m, 1 H), 4.45 (q, 2 H, J = 10.1 Hz), 4.18 (d, 1 H, J = 5.3 Hz), 4.11 (s, 1 H), 3.94 (t, 1 H, J = 6.3 Hz, OH), 3.85-3.81 (m, 2 H), 3.80 (s, 3 H), 3.59-3.51 (m, 4 H), 3.30 (s, 3
H), 2.37 (d, 1 H, J = 14.6 Hz, H24eq), 2.04-2.00 (m, 2 H), 1.74-1.59 (m, 5 H), 1.53-1.45 (m, 2 H), 1.21 (t, 1 H, J = 11.9 Hz, H22ax), 1.08 (q, 1 H, J = 11.7 Hz, H20ax). 13C NMR (150 MHz, acetone-d
6): δ = 159.20, 131.01, 129.04, 114.01, 99.09, 74.00, 72.51, 67.69, 66.36, 64.04, 62.21,
58.39, 54.91, 54.58, 43.74, 38.92, 38.60, 38.38, 36.52, 34.11. The stereochemistry
of CD spiroketal was determined by 2D-COSY and NOESY experiments. NOEs were observed
between H19ax and H24eq, H21 and H24eq, H22eq and H24ax as well as H21 and H-19. HRMS: m/z calcd for C22H34O7K: for [M + K+] 449.1942. Found: 449.1940.
<A NAME="RS06104ST-21">21</A>
Physical data of 10: [α]D
25 +0.3 (c 1.7, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.30 (d, 2 H, J = 8.3 Hz), 6.92 (d, 2 H, J = 8.4 Hz), 4.48-4.41 (m, 2 H), 4.20-4.18 (m, 1 H, H25), 4.17-4.11 (m, 1 H, H27),
4.08-4.05 (m, 1 H, H19), 3.80 (s, 3 H), 3.80-3.79 (m, 1 H, OH), 3.69-3.62 (m, 3 H),
3.58-3.50 (m, 2 H), 3.37 (t, 1 H, J = 5.1 Hz, OH), 3.24 (s, 3 H), 2.69 (d, 1 H, J = 10.2 Hz, H22eq), 2.08-2.03 (m, 1 H, H20), 1.84-1.78 (m, 3 H), 1.73-1.58 (m, 5 H), 1.07-0.99 (m,
2 H). 13C NMR (150 MHz, acetone-d
6): δ = 159.23, 130.98, 129.05, 113.52, 98.95, 72.98, 72.10, 66.68, 66.64, 66.51, 62.38,
58.68, 54.60, 54.40, 43.65, 39.96, 39.26, 38.19, 37.62, 35.99. The stereochemistry
of CD spiroketal was determined by 2D-COSY and NOESY experiments. NOEs were observed
between H19 and H21, H24 and H25, H22 and H24 as well as H22eq and H27ax which was consistent with the spiroketal junction with a chair conformation for the
C19-C22 fragment and a boat like conformation for the C24-C27 segment. HRMS: m/z calcd for C22H34O7K: for [M + K+] 449.1942. Found: 449.1940.