Planta Med 2004; 70(11): 1069-1074
DOI: 10.1055/s-2004-832649
Original Paper
Biochemistry and Molecular Biology
© Georg Thieme Verlag KG Stuttgart · New York

Pharmacokinetics of Baicalin in Rats and its Interactions with Cyclosporin A, Quinidine and SKF-525A: A Microdialysis Study

Pi-Lo Tsai1 , Tung-Hu Tsai1 , 2 , 3
  • 1Institute of Traditional Medicine, National Yang-Ming University, Taipei 112, Taiwan
  • 2Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
  • 3National Research Institute of Chinese Medicine, Taipei, Taiwan
Further Information

Publication History

Received: February 20, 2004

Accepted: June 13, 2004

Publication Date:
18 November 2004 (online)

Abstract

Baicalin, a flavone glucuronide derived mainly from the root of Scutellaria baicalensis, has been used in traditional Chinese medicine as an anti-inflammatory and anti-viral agent. To explore whether the disposition of baicalin is related to multidrug resistance P-glycoprotein (P-gp), baicalin (3, 10 and 30 mg kg-1; i. v.) was injected to rats for a pharmacokinetic study using microdialysis coupled with HPLC. The results indicate that baicalin goes through hepatobiliary excretion against a concentration gradient based on the blood-to-bile distribution ratio (AUCbile/AUCblood), but that AUCblood or AUCbile did not show any dose-related increase in the range from 3 to 30 mg kg-1. Coadministration of cyclosporin A (CsA) or quinidine (both are P-gp inhibitors) was used to delineate the role of P-gp on baicalin disposition, while SKF-525A (a cytochrome P450 inhibitor) could specifically inhibit the cytochrome P450 catalysis of baicalin without crossing with P-gp function. Both CsA and quinidine promoted the active transport of baicalin into bile and reduced its level in blood, and this result was the same as that obtained by treating with SKF-525A. Hence, the association of the involvement of P-gp in active baicalin efflux into bile seems to be excluded since CsA and quinidine are also cytochrome P450 inhibitors. In addition, baicalin was not detected in the brain striatum after treating with baicalin alone in the present study. Also, neither CsA nor quinidine co-administered with baicalin is able to induce measurable levels of baicalin in rat brain, which suggests that baicalin might not be able to pass through the blood-brain barrier (BBB).

References

  • 1 Akao T, Kawabata K, Yanagisawa E, Ishihara K, Mizuhara Y, Wakui Y, Sakashita Y, Kobashi K. Baicalin, the predominant flavone glucuronide of Scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form.  J Pharm Pharmacol. 2000;  52 1563-8
  • 2 Wu J, Chen D, Zhang R. Study on the bioavailability of baicalin-phospholipid complex by using HPLC.  Biomed Chromatogr. 1999;  13 493-5
  • 3 He X, Shi S, Shi C. Pharmacokinetics of baicaline in rat.  Chin Pharm J. 1998;  33 232-4
  • 4 Elmquist W F, Sawchuk R J. Application of microdialysis in pharmacokinetic studies.  Pharm Res. 1997;  14 267-88
  • 5 Fettweis G, Borlak J. Topics in xenobiochemistry-application of microdialysis techniques in pharmacokinetic studies.  Xenobiotica. 1996;  26 473-85
  • 6 Tanigawara Y. Role of P-glycoprotein in drug disposition.  Ther Drug Monit. 2000;  22 137-40
  • 7 Lin J H, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications.  Clin Pharmacokinet. 2003;  42 59-98
  • 8 Tsai T H, Liu S C, Tsai P L, Ho L K, Shum A Y, Chen C F. The effects of the cyclosporin A, a P-glycoprotein inhibitor, on the pharmacokinetics of baicalein in the rat: a microdialysis study.  Brit J Pharmacol. 2002;  137 1314-20
  • 9 Tsai T H, Lee C H, Yeh P H. Effect of P-glycoprotein modulators on the pharmacokinetics of camptothecin using microdialysis.  Brit J Pharmacol. 2001;  134 1245-52
  • 10 Scott D O, Lunte C E. In vivo microdialysis sampling in the bile, blood, and liver of rats to study the disposition of phenol.  Pharm Res. 1993;  10 335-42
  • 11 Evrard P A, Deridder G, Verbeeck R K. Intravenous microdialysis in the mouse and the rat: development and pharmacokinetic application of a new probe.  Pharm Res. 1996;  13 12-7
  • 12 Abe K, Inoue O, Yumioka E. Biliary excretion of metabolites of baicalin and baicalein in rats.  Chem Pharm Bull. 1990;  38 209-11
  • 13 Hurh E, Lee E J, Lee A K, Kim Y G, Kim S H, Kim S G, Lee M G. Effects of enzyme inducers or inhibitors on the pharmacokinetics of intravenous parathion in rats.  Biopharm Drug Dispos. 2000;  21 193-204
  • 14 Lin J H. Dose-dependent pharmacokinetics: experimental observations and theoretical considerations.  Biopharm Drug Dispos. 1994;  15 1-31
  • 15 Wakui Y, Takeda S, Yanagisawa E, Isoni T, Kaneko M, Ishihara K, Miyamoto C, Hirayama M, Imai K, Ishibashi E, Matsuzaki Y, Hosoya E. Pharmacokinetic study of the herbal preparation TJ-9 (Shosaiko-to).  Eur J Pharmacol. 1990;  183 1867
  • 16 Chu X Y, Kato Y, Sugiyama Y. Possible involvement of P-glycoprotein in biliary excretion of CPT-11 in rats.  Drug Metab Dispos. 1999;  27 440-1
  • 17 Fromm M F, Kim R B, Stein C M, Wilkinson G R, Roden D M. Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine.  Circulation. 1999;  99 552-7
  • 18 Brunner L J, Werner U, Gravenall C E. Effect of dose on cyclosporine-induced suppression of hepatic cytochrome P450 3A2 and 2C11.  Eur J Pharm Biopharm. 2000;  49 129-35
  • 19 Niwa T, Shiraga T, Mitani Y, Terakawa M, Tokuma Y, Kagayama A. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A.  Drug Metab Dispos. 2000;  28 1128-34

Professor Tung-Hu Tsai, Ph. D.

National Research Institute of Chinese Medicine

155-1 Li-Nong Street Section 2

Taipei 112

Taiwan

R. O. C

Phone: +886-2-2820-1999 ext 8091

Fax: +886-2-2826-4276

Email: thtsai@nricm.edu.tw