Subscribe to RSS
DOI: 10.1055/s-2004-832806
Thiopropenoylstannanes: The First Access to the Class of Thioacylstannanes
Publication History
Publication Date:
03 September 2004 (online)
Abstract
Reaction of stannylated allenes with bis(trimethylsilyl)sulfide/CoCl2·6H2O affords the first example of the synthesis of thioacylstannanes. The so obtained thiopropenoylstannanes behave as efficient thiabutadienes towards different in situ generated thioaldehydes and thioacylsilanes, leading to 2-substituted 4-stannyl-1,3-dithiacyclohex-4-ene derivatives through a regioselective hetero Diels-Alder reaction.
Key words
thioacylstannanes - thioacylsilanes - cycloadditions - heterodynes - dithiins
-
1a
Ricci A.Degl’Innocenti A. Synthesis 1989, 647 -
1b
Page PCB.Klair SS.Rosenthal S. Chem. Soc. Rev. 1990, 19: 147 -
1c
Cirillo PF.Panek JS. Org. Prep. Proc. Int. 1992, 24: 553 -
1d
Bonini BF.Comes-Franchini M.Fochi M.Mazzanti G.Ricci A. J. Organomet. Chem. 1998, 567: 181 -
2a
Warner P. In Comprehensive Organic Functional Group Transformations Vol. 5.10:Katritzky AR.Meth-Cohn O.Rees CW. Elsevier; Oxford: 1995. and references cited therein -
2b
Roser C.Albers R.Sander W. Eur. J. Org. Chem. 2001, 269 -
2c
Wyatt PB. Science of Synthesis 2003, 5: 423 ; and references cited therein -
3a
Chan C.-M.Chong JM. Tetrahedron Lett. 1990, 31: 1985 -
3b
Marshall JA.Welmaker GS.Gung BW.
J. Am. Chem. Soc. 1991, 113: 647 - 4
Shirakawa E.Nakao Y.Yoshida H.Hiyama T. J. Am. Chem. Soc. 2000, 122: 9030 - 5
Shirakawa E.Yamamoto Y.Nakao Y.Tsuchimoto T.Hiyama T. Chem. Commun. 2001, 1926 - 6
Obora Y.Nakanishi M.Togunaka M.Tsuji Y. J. Org. Chem. 2002, 67: 5835 - 7
Garayt MR.Percy JM. Tetrahedron Lett. 2001, 42: 6377 - 8
Capperucci A.Degl’Innocenti A.Faggi C.Reginato G.Ricci A. J. Org. Chem. 1989, 54: 2966 - 9
Ricci A.Degl’Innocenti A.Capperucci A.Reginato G.Mordini A. Tetrahedron Lett. 1991, 32: 1899 - Reviews:
-
10a
Metzner P. Synthesis 1992, 1185 -
10b
Usov VA.Timokina LV.Voronkov MG. Sulf. Rep. 1992, 12: 95 -
10c
McGregor WM.Sherrington DC. Chem. Soc. Rev. 1993, 199 -
10d
Metzner P.Thuillier A. Sulfur Reagents in Organic Synthesis Academic Press; London: 1994. -
10e
Okazaki R. In Organosulfur Chemistry Chap. 5:Page PCB. Academic Press; London: 1995. -
10f
Metzner P. Topics in Current Chemistry 1999, 204: 127 -
11a
Jones AD. In Comprehensive Organic Functional Group Transformations Vol. 5:Katritzky AR.Meth-Cohn O.Rees CW. Elsevier; Oxford: 1995. p.647 ; and references cited therein -
11b
Bonini BF.Fochi M. Rev. Heteroat. Chem. 1997, 16: 47 ; and references cited therein -
11c
Bonini BF.Comes-Franchini M.Fochi M.Mazzanti G.Ricci A.Varchi G. Tetrahedron Lett. 1999, 40: 6473 -
11d
Degl’Innocenti A.Capperucci A.Oniciu DC.Katritzky AR. J. Org. Chem. 2000, 65: 9206 -
11e
Bonini BF.Comes-Franchini M.Fochi M.Mazzanti G.Ricci A.Tomasulo M.Varchi G. J. Organomet. Chem. 2001, 637-639: 407 -
12a
Bonini BF.Mazzanti G.Zani P. J. Chem. Soc., Chem. Commun. 1986, 964 -
12b
Barbaro G.Battaglia A.Giorgianni P.Bonini BF.Maccagnani G.Zani P. J. Org. Chem. 1990, 55: 3744 -
12c
Bonini BF. Phosphorus, Sulfur Silicon Relat. Elem. 1993, 74: 31 ; and references cited therein -
13a
Degl’Innocenti A.Capperucci A. Eur. J. Org. Chem. 2000, 2171 -
13b
Capperucci A.Degl’Innocenti A.Biondi S.Nocentini T.Rinaudo G. Tetrahedron Lett. 2003, 44: 2831 -
13c
Capperucci A.Degl’Innocenti A.Nocentini T.Biondi S.Dini F. J. Organomet. Chem. 2003, 686: 363 -
15a
Boger DL.Weinreb SM. In Hetero Diels-Alder Methodology in Organic Synthesis Vol. 47: Academic Press; Orlando: 1987. -
15b
Weinreb SM. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon Press; New York: 1991. Chap. 4.2. -
15c
Tietze LF.Kettshau G. Top. Curr. Chem. 1997, 189: 1 - 17
Degl’Innocenti A.Scafato P.Capperucci A.Bartoletti L.Spezzacatena C.Ruzziconi R. Synlett 1997, 361 -
18a
Corey EJ.Seebach D.Freedman R. J. Am. Chem. Soc. 1967, 89: 434 -
18b
Brook AG.Duff JM.Jones PF.Davis NR. J. Am. Chem Soc. 1967, 89: 431 -
18c
Degl’Innocenti A.Walton DRM.Seconi G.Pirazzini G.Ricci A. Tetrahedron Letters 1980, 21: 3927
References
Typical Procedure: A solution of 50 mg (0.17 mmol) of allene 1a and 72 µL (0.34 mmol, 61 mg) of HMDST in 0.7 mL of THF was slowly added at -78 °C under inert atmosphere with a solution of CoCl2·6H2O (40 mg, 0.17 mmol) in 2 mL of THF. The mixture was kept at -78 °C for 4 h, the progress of the reaction monitored by TLC, then allowed to reach r.t. After dilution with Et2O and washing with H2O, the organic phase was dried over Na2SO4. Evaporation of the solvent and purification on TLC (hexanes-Et2O 40:1) afforded 25 mg of 4a (49%) together with 12% of 5a. Compound 4a: 1H NMR (200 MHz, CDCl3): δ = 0.23 (9 H, s), 1.59 (3 H, d, J = 7.0 Hz), 3.24 (1 H, dd, J = 6.2 Hz, J = 17.4 Hz), 3.58 (1 H, bdd, J = 3.1 Hz, J = 17.4 Hz), 4.25 (1 H, q, J = 7.0 Hz), 5.95 (1 H, dd, J = 3.1 Hz, J = 6.2 Hz) ppm. 13C NMR (50 MHz, CDCl3): δ = -2.3, 20.9, 29.7, 30.3, 122.2, 125.5 ppm. MS: m/z (%) = 296 (8) [M+], 281 (4), 221 (19), 165 (79), 135 (22), 71 (100). Compound 5a: 1H NMR (200 MHz, CDCl3): d = 1.49 (3 H, d, J = 7.2 Hz), 3.25 (1 H, ddd, J = 1.4 Hz, J = 5.8 Hz, J = 18.0 Hz), 3.51 (1 H, ddd, J = 2.2 Hz, J = 3.4 Hz, J = 18.0 Hz), 4.20 (1 H, q, J = 7.2 Hz), 5.89 (1 H, ddd, J = 3.4 Hz, J = 5.8 Hz, J = 10.6 Hz), 6.21 (1 H, ddd, J = 1.4 Hz, J = 2.2 Hz, J = 10.6 Hz) ppm. 13C NMR (50 MHz, CDCl3): d = 21.9, 25.2, 40.6, 121.9, 137.0 ppm.
16
General Procedure: To a solution of 50 mg (0.17 mmol) of allene 1a in 1.5 mL of THF were added, under N2 atmosphere, 151 mg (0.85 mmol) of benzoyltrimethylsilane 7b
18 and 426 µL (2.04 mmol, 363 mg) of HMDST. The mixture was cooled to -78 °C and added with a solution of 243 mg (1.02 mmol) of CoCl2·6H2O dissolved in 6.0 mL of THF. Progress of the reaction was monitored by TLC (hexanes-Et2O 40:1) and after 1.5 h at -78 °C the mixture was allowed to reach r.t. (ca. 15 °C), then diluted with Et2O and the organic phase washed with H2O and brine, and dried over Na2SO4. Evaporation of the solvent afforded the crude product. Purification on Florisil (hexanes-Et2O 40:1) afforded 23 mg of 9b (32%) and 8 mg of 1,2-dithiin isomer 11 (11%), together with minor amounts of the corresponding destannylated compounds (ca. 10%). Compound 9b: 1H NMR (200 MHz, CDCl3): d = 0.17 (9 H, s), 0.23 (9 H, s), 2.94 (1 H, dd, J = 6.2 Hz, J = 19.0 Hz), 3.08 (1 H, dd, J = 3.0 Hz, J = 19.0 Hz), 6.03 (1 H, dd, J = 3.0 Hz, J = 6.2 Hz), 6.96-7.90 (5 H, m) ppm. 13C NMR (50 MHz, CDCl3):
δ = -3.6, -2.7, 22.9, 47.2, 125.7, 127.5, 127.8, 128.3, 128.8, 141.5 ppm. MS: m/z (%) = 267 (6) [M+ - 163], 194 (8), 161 (11), 77 (19) 73 (100). Compound
11: 1H NMR (200 MHz, CDCl3): d = 0.03 (9 H, s), 0.10 (9 H, s), 2.50-2.30 (2 H, m), 5.92 (1 H, dd, J = 3.1 Hz, J = 6.0 Hz), 7.01-7.90 (5 H, m) ppm. 13C NMR (50 MHz, CDCl3): d = -3.7, -1.7, 40.1, 46.5, 125.5, 127.1, 128.0, 128.2, 128.5, 140.5 ppm. MS:
m/z (%) = 327 (21) [M+ - 103], 179 (13), 165 (10), 135 (32), 121 (28), 103 (27), 73 (100).