References
- 1
Tilstam U.
Weinmann H.
Org. Process Res. Dev.
2002,
6:
384
-
2a
Falorni M.
Porcheddu A.
Taddei M.
Tetrahedron Lett.
1999,
40:
4395
-
2b
Falorni M.
Giacomelli G.
Porcheddu A.
Taddei M.
J. Org. Chem.
1999,
64:
8962
-
2c
Falchi A.
Giacomelli G.
Porcheddu A.
Taddei M.
Synlett
2000,
275
-
2d
De Luca L.
Giacomelli G.
Taddei M.
J. Org. Chem.
2001,
66:
2534
-
2e
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2001,
3:
1519
-
2f
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2002,
4:
553
-
2g
De Luca L.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
5152
-
2h
De Luca L.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
6272
-
2i
Giacomelli G.
Porcheddu A.
Salaris M.
Org. Lett.
2003,
5:
2715
-
3a
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2001,
3:
3041
-
3b
De Luca L.
Giacomelli G.
Masala S.
Porcheddu A.
J. Org. Chem.
2003,
68:
4999
- 4
De Luca L.
Giacomelli G.
Synlett
2004,
2180
-
5a
Fieser M.
Fieser LF.
Reagents for Organic Synthesis
John Wiley and Sons;
New York:
1967.
p.78
-
5b
Barton DRH.
Ollis WD.
Comprehensive Organic Chemistry
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1979.
p.1030
- 6
Daoust B.
Lessard J.
Tetrahedron
1999,
55:
3495 ; and references therein
-
7a
Poisel H.
Schmidt U.
Angew. Chem., Int. Ed. Engl.
1976,
15:
294
-
7b
Poisel H.
Chem. Ber.
1977,
110:
948
-
7c
Kolar AJ.
Olsen RK.
Synthesis
1977,
457
- 8
Drago RS.
Wenz DA.
Carlson RJ.
J. Am. Chem. Soc.
1962,
84:
1106
- 9
Bachand C.
Driguez H.
Paton JM.
Touchard D.
Lessard J.
J. Org. Chem.
1974,
39:
3136
- 10
Zimmer H.
Audrieth LF.
J. Am. Chem. Soc.
1954,
76:
3856
- 11
Curini M.
Epifano F.
Marcotullio MC.
Rosati O.
Tsadjout A.
Synlett
2000,
813
- 12
Larionov OV.
Kozhushkov SI.
de Meijere A.
Synthesis
2003,
1916
- 15
De Rosa M.
Brown K.
McCoy M.
Ong K.
Sanford K.
J. Chem. Soc., Perkin Trans. 2
1993,
1787
- 16
De Sarlo F.
Guarna A.
Brandi A.
Mascagni P.
Gazz. Chim. Ital.
1980,
110:
341
- 17
Roberts JT.
Rittberg BR.
Kovacic P.
J. Org. Chem.
1981,
46:
3988
- 18
Johnson RA.
Greene FD.
J. Org. Chem.
1975,
40:
2186
- 19
Goosen A.
McCleland CW.
Merrifield AJ.
J. Chem. Soc., Perkin Trans. 1
1992,
627
13 All solvents and reagents were used as obtained from commercial source. Standard 1H NMR and 13C NMR were recorded at 300 MHz and 75.4 MHz, from CDCl3 solutions. Mass spectra were recorded at 70 eV with a direct probe for sample introduction. All known compounds have analytical data corresponding to literature data. All runs were conducted at least in duplicate.
Typical Procedure for the Preparation of N
-Chloro-amides.
Trichloroisocyanuric acid (5.25 mmol) was added at 0 °C to a well stirred solution of the amide (5 mmol) in CH2Cl2 (30 mL) and the mixture was kept at r.t. for the required time, monitoring (TLC) till completion. Then the mixture was filtered on Celite and the solution evaporated under reduced pressure affording the N-chloro derivative.
Spectroscopic Data of Selected Compounds:
(
S
)
-
2-(
N
-Chloroamino-
N
-
tert
-butoxycarbonyl)-3-phenylpropanoic Acid (
9): [α]D
25 -54.98 (c 1, CH2Cl2). 1H NMR: δ = 10.51 (s, 1 H), 7.35-7.05 (m, 5 H), 4.60 (m, 1 H), 3.35-2.92 (m, 2 H), 1.40 (s, 9 H) ppm. 13C NMR: δ = 174.9, 156.0, 139.4, 128.9, 128.5, 127.1, 79.5, 54.4, 37.7, 28.2 ppm. MS (ES+): m/e (relative intensity) = 301 (32), 300(1), 299 (100). IR (film): 1255 cm-1.
(
S
)-Methyl 2-(
N
-Chloramino-
N
-benzyloxycarbonyl)-4-methylpentanoate (
12): [α]D
20 -19.81 (c 0.5, CH2Cl2). 1H NMR: δ = 7.40-7.30 (m, 5 H), 5.27 (s, 2 H), 4.99 (dd, J = 3.90, 11.70 Hz, 1 H), 3.70 (s, 3 H), 2.06-1.85 (m, 1 H), 1.77-1.59 (m, 2 H), 0.94 (d, 6 H) ppm. 13C NMR: δ = 170.3, 156.2, 135.3, 128.9, 128.5, 127.8, 66.9, 53.4, 52.4, 41.6, 24.2, 23.0, 20.7 ppm. MS (ES+): m/e (relative intensity) = 315 (34), 314 (15), 313 (100). IR (film): 1243 cm-1.
(2
S
,3
S
)-2-
N-
Chloramino-
N
-benzyloxycarbonyl)-3-methylpentanoic Acid (
13): [α]D
20 -4.52 (c 0.5, CH2Cl2). 1H NMR δ = 7.37-7.29 (m, 5 H), 5.08 (s, 2 H), 4.43-4.33 (m, 1 H), 2.02-1.80 (m, 1 H), 1.62-1.39 (m, 1 H), 1.28-1.13 (m, 1 H), 0.92 (m, 6 H) ppm. 13C NMR: δ = 173.8, 156.3, 135.1, 128.8, 128.4, 128.2, 69.4, 58.2, 37.5, 24.6, 15.4, 10.3 ppm. MS (ES+): m/e (relative intensity) = 301 (32), 300(6), 299 (100). IR (film): 1267 cm-1.
(
S
)-Methyl 2-[
N
-Chloramino-
N
-(9
H
-fluoren-9-yl)meth-oxycarbonyl]-3-methylbutanoate (
14): [α ]D
20 -4.13 (c 0.1, CH2Cl2). 1H NMR: δ = 7.62 (d, 2 H), 7.56 (d, 2 H), 7.26-7.13 (m, 4 H), 4.47-4.35 (m, 2 H), 4.30 (m, 1 H), 4.19 (t, 1 H), 3.76 (s, 3 H), 2.25-2.10 (m, 1 H), 0.97 (d, 3 H), 0.92 (d, 3 H) ppm. 13C NMR: δ = 172.6, 156.0, 145.4, 138.7, 128.9, 128.1, 125.4, 120.9, 67.8, 59.0, 53.4, 52.2, 31.1, 18.8, 17.5 ppm. MS (ES+): m/e (relative intensity) = 389 (35), 387 (100), 388 (19), 390 (5). IR (film): 1216 cm-1. Anal. Calcd for C21H22ClNO4 (387.86): C, 65.03; H, 5.72; Cl, 9.14; N, 3.61. Found: C, 65.05; H, 5.78; Cl, 9.18; N, 3.64.
(
S
)-2-[
N
-Chloramino-
N
-(9
H
-fluoren-9-yl)methoxy-carbonyl]-3-hydroxypropanoic Acid (
15): [α]D
20 -11.96 (c 0.2, CH2Cl2). 1H NMR: δ = 10.41 (s, 1 H), 7.43 (d, 2 H), 7.27-7.12 (m, 6 H), 6.47 (br s, 1 H), 4.46 (s, 2 H), 4.18-3.70 (m, 4 H) ppm. 13C NMR: δ = 173.8, 156.6, 145.2, 144.8, 129.0, 128.2, 125.2, 120.8, 67.9, 55.9, 46.8 ppm. MS (ES+): m/e (relative intensity) = 363 (28), 361 (100), 336 (19), 364 (5). IR (film): 1230 cm-1. Anal. Calcd for C18H16ClNO5 (361.07): C, 59.76; H, 4.46; Cl, 9.80; N, 3.87. Found: C, 59.72; H, 4.48; Cl, 9.80; N, 3.84.
14
Typical Procedure for the Preparation of N
-Chloroamides from Primary Amides.
Trichloroisocyanuric acid (1.60 mmol) was added slowly, in small portions, and at 0 °C to a well stirred solution of the amide (5 mmol) in dry acetone:CHCl3 (1:2 solution, 30 mL) and the mixture was kept at r.t. for the required time, monitoring (TLC) till completion. Then the mixture was filtered on Celite and the solution evaporated under reduced pressure affording the N-chloro derivatives 16 and 17.
[13]
[16]