MR-basierte Methoden der funktionellen Bildgebung des zentralen Nervensystems
MR-Based Methods of the Functional Imaging of the CNSF. L. Giesel1
, T. Wüstenberg2
, A. Bongers3
, M. A. Weber1
, C. Zechmann1
, K. T. Baudendistel3
, H. von Tengg-Kobligk1
, H. K. Hahn4
, M. Essig1
, H.-U Kauczor1
Im vorliegenden Artikel werden die gebräuchlichsten Methoden der funktionellen MR-Bildgebung dargestellt. Der Schwerpunkt liegt dabei auf der Abbildung funktioneller Prozesse und deren Pathologie im Zentralnervensystem. Es werden die physikalisch-physiologischen Grundlagen kontrastmittelverstärkter und kontrastmittelfreier Verfahren dargestellt und es wird ihr Potenzial bezüglich einer klinischen Anwendung anhand ausgewählter Fälle diskutiert. Im Bereich der kontrastmittelverstärkten MR-Techniken wird insbesondere auf die T1- und T2*-dynamische MRT eingegangen. Ausgehend von verschiedenen pharmakokinetischen Modellen der Kontrastmittelanreicherung werden diagnostische Ansätze für die Neurologie und Strahlentherapie diskutiert. Die kontrastmittelfreien Verfahren werden am Beispiel der Blood Oxygenation Level Dependent (BOLD)-fMRT und des Arterial Spin Labelings (ASL) dargestellt und ihre diagnostische Relevanz wird an verschiedenen klinischen Beispielen aus der Psychiatrie und Neurochirurgie erläutert. Abschließend wird ein vergleichender Ausblick bezüglich der zu erwartenden Entwicklungen auf dem Gebiet der funktionellen MRT gegeben.
Abstract
This review presents the basic principles of functional imaging of the central nervous system utilizing magnetic resonance imaging. The focus is set on visualization of different functional aspects of the brain and related pathologies. Additionally, clinical cases are presented to illustrate the applications of functional imaging techniques in the clinical setting. The relevant physics and physiology of contrast-enhanced and non-contrast-enhanced methods are discussed. The two main functional MR techniques requiring contrast-enhancement are dynamic T1- and T2*-MRI to image perfusion. Based on different pharmacokinetic models of contrast enhancement diagnostic applications for neurology and radio-oncology are discussed. The functional non-contrast enhanced imaging techniques are based on “blood oxygenation level dependent (BOLD)-fMRI and arterial spin labeling (ASL) technique. They have gained clinical impact particularly in the fields of psychiatry and neurosurgery.
1
Degani H, Gusis V, Weinstein D. et al .
Mapping pathophysiological features of breast tumors by MRI at high spatial resolution.
Nature Medicine.
1997;
3
780-782
3
Frouge C, Guinebretiere J M, Contesso G. et al .
Correlation between contrast enhancement in dynamic magnetic resonance imaging of the breast and tumor angiogenesis.
Invest Radiol.
2004;
29
1043-1049
5
Tofts P S, Brix G, Buckley D L. et al .
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.
J Magn Reson Imag.
1999;
10
223-232
6
Harrer J U, Parker G J, Heeger D J. et al .
Comparative study of methods for determining vascular permeability and blood volume in human gliomas.
J Magn Reson Imaging.
2004;
20
748-757
7
Scholdei R, Wenz F, Essig M. et al .
Simultane Bestimmung der arteriellen Inputfunktion für die dynamische susceptibilitätsgewichtete Magnetresonanz-tomographie aus der A. carotis interna und der A. cerebri media.
Fortschr Röntgenstr.
1999;
171
38-43
8
Cha S, Knopp E A.
Dynamic contrast-enhanced T2*-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin.
Am J Neuroradiol.
2000;
21
881-890
9
Rempp K A, Brix G, Wenz F. et al .
Quantification of Regional Cerebral Blood Flow and Volume with Dynamic Susceptibility Contrast-enhanced MR Imaging.
Radiology.
1994;
193
637-641
10
Sugahara T, Korogi Y, Tomiguchi S. et al .
Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue.
Am J Neuroradiol.
2000;
21
901-909
11
Benner T, Heiland S, Erb G. et al .
Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise.
Mag Reson Imag.
1997;
15
307-317
13
Calamante F, Gadian D G, Connelly A.
Delay and Dispersion Effects in Dynamic Susceptibility Contrast MRI: Simulations Using Singular Value Decomposition.
Mag Reson Med.
2000;
44
466-473
14
Casey S O, Sampaio R C, Michel E. et al .
Posterior reversible encephalopathy syndrome: utility of fluid-attenuated inversion recovery MR imaging in the detection of cortical and subcortical lesions.
Am J Neuroradiol.
2000;
21
1199-1206
15
Østergaard L, Weisskoff R M, Chesler D A. et al .
High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis.
Mag Reson Med.
1996;
36
715-725
16
Finocchi V, Bozzao A, Bonamini M. et al .
Magnetic resonance imaging in Posterior Reversible Encephalopathy Syndrome: report of three cases and review of literature.
Arch Gynecol Obstet.
2005;
271
79-85
20
Schaefer P W, Buonanno F S, Gonzalez R G. et al .
Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia.
Stroke.
1997;
28
1082-1085
21
Barbier E L, den B oer JA, Peters A R. et al .
A model of the dual effect of gadopentetate dimeglumine on dynamic brain MR images.
Mag Reson Imag.
1999;
10
242-253
22
Hacklander T, Reichenbach J R, Modder U.
Comparison of cerebral blood volume measurements using the T1 and T2* methods in normal human brains and brain tumors.
J Comput Assist Tomogr.
2004;
21
857-866
23
Sugahara T, Korogi Y, Kochi M. et al .
Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas.
Am J Roentgenol.
1998;
171
1479-1486
26
Hoge R D, Atkinson J, Gill B. et al .
Investigation of BOLD Signal Dependence on Cerebral Blood Flow and Oxygen Consumption: The Deoxyhemoglobin Dilution Model.
Mag Reson Med.
1999;
42
849-863
27
Buxton R B, Wong E C, Frank L R.
Dynamics of blood flow and oxygenation changes during brain activation: The balloon model.
Mag Reson Med.
1998;
39
855-864
28
Howseman A M, Bowtell R W.
Functional magnetic resonance imaging: imaging techniques and contrast mechanisms.
Philos Trans R Soc Lond B Biol Sci.
1999;
354
1179-1194
29
Krings T, Reinges M H, Willmes K. et al .
Functional MRI for presurgical planning: problems, artefacts, and solution strategies.
J Neurol Neurosurg Psychiatry.
2002;
70
749-760
33
Friston K J, Mechelli A, Turner R. et al .
Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics.
NeuroImage.
2000;
12
466-477
34
Villringer A, Dirnagl U.
Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc.
Brain Metab Rev.
1995;
7
240-276
35
Cohen E R, Rostrup E, Sidaros K. et al .
Hypercapnic Normalization of BOLD fMRI Data: Comparision Across Field Strengths and Pulse Sequences.
Proceedings of the International Society of Mag Reson Med.
2003;
11
1767
36
Schad L R, Wenz F, Baudendistel K. et al .
Functional 2D and 3D magnetic resonance imaging of motor cortex stimulation at high spatial resolution using standard 1.5 T imager.
Magn Reson Imag.
1994;
12
9-15
38
Küger G, Kastrup A, Glover G H.
Neuroimaging at 1.5 and at 3.0 Tesla: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging.
Mag Reson Med.
2001;
45
595-604
40
Wustenberg T, Jordan K, Giesel F L. et al .
Physiological and technical limitations of functional magnetic resonance imaging (fMRI) - consequences for clinical use.
Radiologe.
2003;
43
552-557
41
Nielson K A, Langenbecker S A, Ross T J. et al .
Comparatibility of functional MRI response in young and old during inhibition.
NeuroReport.
2004;
15
129-133
42
Riecker A, Grodd W, Klose U. et al .
Relation Betwenn Regional Functional MRI Activation and Vascular Reactivity to Carbon Dioxide During Normal Aging.
J Cereb Blood Metab.
2003;
23
565-573
43
Rother J, Knab R, Hamzei F. et al .
Negative dip in BOLD fMRI is caused by blood flow - oxygen consumption uncoupling in humans.
NeuroImage.
2002;
15
98-102
44
Fernández G, de Greiff A, von Oertzen J. et al .
Language Mapping in Less Than 15 Minutes: Real-Time Functional MRI during Routine Clinical Investigation.
NeuroImage.
2001;
14
585-594
48
Zhang W, Williams D S, Detre J A. et al .
Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: accounting for transit time and cross-relaxation.
Mag Reson Med.
1992;
25
362-371
50
Talangala S L.
Multi-Slice perfusion MRI using continuous arterial water labelling controlling for MT effects with simultaneous proximal and distal RF irradiation.
Proc of the 6th annual meeting of the ISMRM.
1998;
6
381
51
Silva A C, Zhang W, Williams D S. et al .
Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling.
Mag Reson Med.
1995;
33
209-214
52
Zhang W, Silva A C, Williams D S. et al .
NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins.
Mag Reson Med.
1995;
33
370-376
53
Zaharchuk G, Ledden P J, Kwong K K. et al .
Multislice perfusion and perfusion territory imaging in humans with separate label and image coils.
Mag Reson Med.
1999;
41
1093-1098
54
Edelman R R, Siewert B, Darby D G. et al .
Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency.
Radiology.
1994;
192
513-520
56
Wong E C, Buxton R B, Frank L R.
Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling.
NMR in Biomed.
1997;
10
237-249
57
Kim S G, Tsekos N V.
Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging.
Mag Reson Med.
1997;
37
425-435
58
Kim S G.
Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping.
Mag Reson Med.
2004;
34
293-301
59
Helpern J A, Branch C A, Yongbi M N. et al .
Perfusion imaging by un-inverted flow-sensitive alternating inversion recovery (UNFAIR).
Mag Reson Med.
2004;
15
135-139
61
Wong E C, Buxton R B, Frank L R.
Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II).
Mag Reson Med.
1998;
39
702-708
63
Luh W M, Wong E C, Bandettini P A. et al .
QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling.
Mag Reson Med.
1999;
41
1246-1254
64
Gunther M, Bock M, Schad L R.
Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR).
Mag Reson Med.
2001;
46
974-984
66
Forman S D, Silva A C, Dedousis N. et al .
Simultaneous glutamate and perfusion fMRI responses to regional brain stimulation.
J Cereb Blood Metab.
1998;
18
1064-1070
67
Hendrich K S, Kochanek P M, Melik J A.
Assesment of cerebral blood flow during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats.
Proc of the 8th annual meeting of the ISMRM.
2000;
8
1277
68
Weber M A, Gunther M, Lichy M P. et al .
Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue.
Invest Radiol.
2003;
38
712-718
69
Weber M A, Thilmann C, Lichy M P. et al .
Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results.
Invest Radiol.
2004;
39
277-287