Aktuelle Rheumatologie 2006; 31(1): 48-55
DOI: 10.1055/s-2005-858825
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Pathogenese des systemischen Lupus erythematodes

Pathogenesis of Systemic Lupus ErythematosusH.-M Lorenz1 , M. Herrmann2 , T. Winkler3 , J. R. Kalden2
  • 1Sektion Rheumatologie der Med. Klinik V, Universität Heidelberg
  • 2Medizinische Klinik III, Institut für Klinische Immunologie und Rheumatologie der Universität Erlangen-Nürnberg
  • 3Lehrstuhl für Genetik der Universität Erlangen-Nürnberg
Further Information

Publication History

Publication Date:
15 February 2006 (online)

Zusammenfassung

Die Pathogenese des systemischen Lupus erythematodes (SLE) ist nicht geklärt. Aktuelle Forschungsergebnisse legen nahe, dass Apoptosestörungen verantwortlich sind für Autoimmunreaktionen, die schließlich zum SLE führen. Dazu zählen gestörte Signalübertragungen aktivierter Lymphozyten (mit vorzeitiger Apoptose), Defekte bei der Abräumung apoptotischen Materials und Gendefekte im Komplementsystem. In der Folge kommt es zu einem Überangebot an apoptotischem oder sekundärem nekrotischen Material. Dieses wird seinererseits von immunokompetenten Zellen erkannt. Insbesondere Infektionen im Zusammenhang mit Genvariationen wie Fcgamma- oder IL-8-Polymorphismen führen zur Aktivierung von T-und B-Zellen, zur Synthese antinukleärer Antikörper (ANA) oder anti-ds-DNA-Antikörper und schließlich zum beschleunigten Krankheitsentstehen. Östrogene haben möglicherweise einen modulierenden Effekt auf die Immunantwort mit einem erhöhten Erkrankungsrisiko für SLE.

Abstract

Pathogenesis of Systemic Lupus Erythematosus remains unsolved. A variety of new experimental data suggests that a dysfunction of apoptosis might be involved in the initiation of autoimmunity finally leading to SLE. This includes signalling alterations in activated lymphocytes (leading to premature apoptosis), defects in the clearance of apoptotic material and genetic defects in the complement system. These mechanisms lead to an increased onflow of apoptotic or secondary necrotic material which will be recognized by immunocompetent cells. Especially, concomitant infections in the context of genetic variations like Fcγ- or IL-8 polymorphisms, will further induce T- and B-cell activation, synthesis of ANA or anti-ds-DNA antibodies, and finally precipitate the onset of the disease. Estrogens might directly modulate the immune response and therefore favour a shift to a lupus-prone state.

Literatur

  • 1 Manger K, Manger B, Repp R. et al . Definition of risk factors for death, end stage renal disease, and thromboembolic events in a monocentric cohort of 338 patients with systemic lupus erythematosus.  Ann Rheum Dis. 2002;  31 1065
  • 2 Watson M L, Rao J K, Gilkeson G S. et al . Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci.  J Exp Med. 1992;  31 1645
  • 3 Wu J, Zhou T, Zhang J. et al . Correction of accelerated autoimmune disease by early replacement of the mutated lpr gene with the normal Fas apoptosis gene in the T cells of transgenic MRL-lpr/lpr mice.  Proc Natl Acad Sci USA. 1994;  31 2344
  • 4 Fisher G H, Rosenberg F J, Straus S E. et al . Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome.  Cell. 1995;  31 935
  • 5 Rieux-Laucat F, Le D eist F, Hivroz C. et al . Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity.  Science. 1995;  31 1347
  • 6 Drappa J, Vaishnaw A K, Sullivan K E. et al . Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity.  N Engl J Med. 1996;  31 1643
  • 7 Haas J P, Grünke M, Frank C. et al . Increased spontaneous in vitro apoptosis in double negative T cells of humans with a fas/apo-1 mutation.  Cell Death Differ. 1998;  31 751
  • 8 Mysler E, Bini P, Drappa J. et al . The apoptosis-1/Fas protein in human systemic lupus erythematosus.  J Clin Invest. 1994;  31 1029
  • 9 Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes.  J Exp Med. 1994;  31 1317
  • 10 Rosen A, Casciola-Rosen L. Altered autoantigen structure in Sjögren’s Syndrome: implications for the pathogenesis of autoimmune tissue damage.  Crit Rev Oral Biol Med. 2004;  31 156
  • 11 Gabler C, Blank N, Hieronymus T. et al . Extranuclear detection of histones and nucleosomes in activated human lymphoblasts as an early event in apoptosis.  Ann Rheum Dis. 2004;  31 1135
  • 12 Raptis L, Menard H A. Quantitation and characterization of plasma DNA in normals and patients with systemic lupus erythematosus.  J Clin Invest. 1980;  31 1391
  • 13 Steinman C R. Circulating DNA in systemic lupus erythematosus. Isolation and characterization.  J Clin Invest. 1984;  31 832
  • 14 Rumore P M, Steinman C R. Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone.  J Clin Invest. 1990;  31 69
  • 15 Emlen W, Niebur J, Kadera R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus.  J Immunol. 1994;  31 3685
  • 16 Lorenz H M, Grünke M, Hieronymus T. et al . In vitro apoptosis and expression of apoptosis-related molecules in lymphocytes from patients with different autoimmune diseases.  Arthritis Rheum. 1997;  31 306
  • 17 Perniok A, Wedekind F, Herrmann M. et al . High levels of circulating early apoptotic peripheral blood mononuclear cells in systemic lupus erythematosus.  Lupus. 1998;  31 113
  • 18 Lorenz H M, Grunke M, Hieronymus T. et al . Hyporesponsiveness to gamma c-chain cytokines in activated lymphocytes from patients with systemic lupus erythematosus leads to accelerated apoptosis.  Eur J Immunol. 2002;  31 1253
  • 19 Enestrom S, Hultman P. Does amalgam affect the immune system? A controversial issue.  Int Arch Allergy Immunol. 1995;  31 180
  • 20 Krieg A M. CpG DNA: a pathogenic factor in systemic lupus erythematosus?.  J Clin Immunol. 1995;  31 284
  • 21 Lorenz H M. Infection and Inflammation as cofactors for autoimmunity of Systemic Lupus Erythematosus. Weinheim; Wiley-VCH 2003
  • 22 Golan T D, Elkon K B, Gharavi A E. et al . Enhanced membrane binding of autoantibodies to cultured keratinocytes of systemic lupus erythematosus patients after ultraviolet B/ultraviolet A irradiation.  J Clin Invest. 1992;  31 1067
  • 23 Rihner M, McGrath H J. Fluorescent light photosensitivity in patients with systemic lupus erythematosus.  Arthritis Rheum. 1992;  31 949
  • 24 Herrmann M, Voll R E, Zoller O M. et al . Impaired phagocytosis of apoptotic material by monocyte-derived macrophages from patients with systemic lupus erythematosus.  Arthritis Rheum. 1998;  31 1241
  • 25 Baumann I, Kolowos W, Voll R E. et al . Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus.  Arthritis Rheum. 2002;  31 191
  • 26 Liu K, Iyoda T, Saternus M. et al . Immune tolerance after delivery of dying cells to dendritic cells in situ.  J Exp Med. 2002;  31 1091
  • 27 Mohan C, Datta S K. Lupus: key pathogenic mechanisms and contributing factors.  Clin Immunol Immunopathol. 1995;  31 209
  • 28 Madaio M P, Hodder S, Schwartz R S. et al . Responsiveness of autoimmune and normal mice to nucleic acid antigens.  J Immunol. 1984;  31 872
  • 29 Rumore P, Muralidhar B, Lin M. et al . Haemodialysis as a model for studying endogenous plasma DNA: oligonucleosome-like structure and clearance.  Clin Exp Immunol. 1992;  31 56
  • 30 Utz P J, Anderson P. Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens.  Arthritis Rheum. 1998;  31 1152
  • 31 Itescu S. Rheumatic aspects of acquired immunodeficiency syndrome.  Curr Opin Rheumatol. 1996;  31 346
  • 32 Voll R, Herrmann M, Roth E. et al . Immunosuppressive effects of apoptotic cells.  Nature. 1997;  31 350
  • 33 Yung R L, Quddus J, Chrisp C E. et al . 1995. Mechanisms of drug-induced lupus. I. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo.  J Immunol. 1995;  31 3025
  • 34 Blanco P, Palucka A K, Gill M. et al . Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.  Science. 2001;  31 1540
  • 35 Lovgren T, Eloranta M L, Bave U. et al . Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG.  Arthritis Rheum. 2004;  31 1861
  • 36 Januchowski R, Prokop J, Jagodzinski P P. Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus.  J Appl Genet. 2004;  31 237
  • 37 Utz P J, Hottelet M, Schur P H. et al . Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus.  J Exp Med. 1997;  31 843
  • 38 Utz P J, Hottelet M, van Venrooij W J. et al . Association of phosphorylated serine/arginine (SR) splicing factors with the U1-small ribonucleoprotein (snRNP) autoantigen complex accompanies apoptotic cell death.  J Exp Med. 1998;  31 547
  • 39 Schellekens G A, de Jong B A, van den Hoogen F H. et al . Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies.  J Clin Invest. 1998;  31 273
  • 40 Casciola-Rosen L, Wigley F, Rosen A. Scleroderma autoantigens are uniquely fragmented by metal-catalyzed oxidation reactions: implications for pathogenesis.  J Exp Med. 1997;  31 71
  • 41 Pollard K M, Lee D K, Casiano C A. et al . The autoimmunity-inducing xenobiotic mercury interacts with the autoantigen fibrillarin and modifies its molecular and antigenic properties.  J Immunol. 1997;  31 3521
  • 42 Takeuchi K, Turley S J, Tan E M. et al . Analysis of the autoantibody response to fibrillarin in human disease and murine models of autoimmunity.  J Immunol. 1995;  31 961
  • 43 Melino G, Piacentini M. „Tissue” transglutaminase in cell death: a downstream or a multifunctional upstream effector?.  FEBS Lett. 1998;  31 59
  • 44 Rosen A, Casciola-Rosen L, Ahearn J. Novel packages of viral and self-antigens are generated during apoptosis.  J Exp Med. 1995;  31 1557
  • 45 Flaegstad T, Fredriksen K, Dahl B. et al . Inoculation with BK virus may break immunological tolerance to histone and DNA antigens.  Proc Natl Acad Sci USA. 1998;  31 8171
  • 46 Rekvig O P, Fredriksen K, Brannsether B. et al . Antibodies to eukaryotic, including autologous, native DNA are produced during BK virus infection, but not after immunization with non-infectious BK DNA.  Scand J Immunol. 1992;  31 487
  • 47 Fredriksen K, Osei A, Sundsfjord A. et al . On the biological origin of anti-double-stranded (ds) DNA antibodies: systemic lupus erythematosus-related anti-dsDNA antibodies are induced by polyomavirus BK in lupus-prone (NZBxNZW) F1 hybrids, but not in normal mice.  Eur J Immunol. 1994;  31 66
  • 48 James J A, Gross T, Scofield R H. et al . Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: Sm B/B’-derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity.  J Exp Med. 1995;  31 453
  • 49 Casciola-Rosen L, Andrade F, Ulanet D. et al . Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity.  J Exp Med. 1999;  31 815
  • 50 Voll R, Roth E, Girkontaite I. et al . Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production.  Arthritis Rheum. 1997;  31 2162
  • 51 Datta S K. Major peptide autoepitopes for nucleosome-centered T and B cell interaction in human and murine lupus.  Ann N Y Acad Sci. 2003;  31 79
  • 52 Datta S K, Patel H, Berry D. Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis.  J Exp Med. 1987;  31 1252
  • 53 Mohan C, Shi Y, Laman J D. et al . Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis.  J Immunol. 1995;  31 1470
  • 54 Ando D G, Sercarz E E, Hahn B H. Mechanisms of T and B cell collaboration in the in vitro production of anti-DNA antibodies in the NZB/NZW F1 murine SLE model.  J Immunol. 1987;  31 3185
  • 55 Naiki M, Chiang B L, Cawley D. et al . Generation and characterization of cloned T helper cell lines for anti-DNA responses in NZB.H-2bm12 mice.  J Immunol. 1992;  31 4109
  • 56 Shivakumar S, Tsokos G C, Datta S K. T cell receptor alpha/beta expressing double-negative (CD4-/CD8-) and CD4 + T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis.  J Immunol. 1989;  31 103
  • 57 Murakami M, Kumagai S, Sugita M. et al . In vitro induction of IgG anti-DNA antibody from high density B cells of systemic lupus erythematosus patients by an HLA DR-restricted T cell clone.  Clin Exp Immunol. 1992;  31 245
  • 58 Theocharis S, Sfikakis P P, Lipnick R N. et al . Characterization of in vivo mutated T cell clones from patients with systemic lupus erythematosus.  Clin Immunol Immunopathol. 1995;  31 135
  • 59 Steinberg A D, Roths J B, Murphy E D. et al . Effects of thymectomy or androgen administration upon the autoimmune disease of MRL/Mp-lpr/lpr mice.  J Immunol. 1980;  31 871
  • 60 Mihara M, Ohsugi Y, Saito K. et al . Immunologic abnormality in NZB/NZW F1 mice. Thymus-independent occurrence of B cell abnormality and requirement for T cells in the development of autoimmune disease, as evidenced by an analysis of the athymic nude individuals.  J Immunol. 1988;  31 85
  • 61 Wofsy D, Seaman W E. Reversal of advanced murine lupus in NZB/NZW F1 mice by treatment with monoclonal antibody to L3T4.  J Immunol. 1987;  31 3247
  • 62 Kyttaris V C, Tsokos G C. T Lymphocytes in systemic lupus erythematosus: an update.  Curr Opin Rheumatol. 2004;  31 548
  • 63 Vlahakos D V, Foster M H, Adams S. et al . Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites.  Kidney Int. 1992;  31 1690
  • 64 Belmont H M, Abramson S B, Lie J T. Pathology and pathogenesis of vascular injury in systemic lupus erythematosus. Interactions of inflammatory cells and activated endothelium.  Arthritis Rheum. 1996;  31 9
  • 65 Dang H, Harbeck R J. The in vivo and in vitro glomerular deposition of isolated anti-double-stranded-DNA antibodies in NZB/W mice.  Clin Immunol Immunopathol. 1984;  31 265
  • 66 Brinkman K, Termaat R, Berden J H. et al . Anti-DNA antibodies and lupus nephritis: the complexity of crossreactivity.  Immunol Today. 1990;  31 232
  • 67 Termaat R M, Assmann K J, Dijkman H B. et al . Anti-DNA antibodies can bind to the glomerulus via two distinct mechanisms.  Kidney Int. 1992;  31 1363
  • 68 Madaio M P, Carlson J, Cataldo J. et al . Murine monoclonal anti-DNA antibodies bind directly to glomerular antigens and form immune deposits.  J Immunol. 1987;  31 2883
  • 69 Faaber P, Rijke T P, van de Putte L B. et al . Cross-reactivity of human and murine anti-DNA antibodies with heparan sulfate. The major glycosaminoglycan in glomerular basement membranes.  J Clin Invest. 1984;  31 1824
  • 70 Kramers C, Hylkema M N, van Bruggen M C. et al . Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo.  J Clin Invest. 1994;  31 568
  • 71 Morioka T, Woitas R, Fujigaki Y. et al . Histone mediates glomerular deposition of small size DNA anti-DNA complex.  Kidney Int. 1994;  31 991
  • 72 Rovin B H, Lu L, Zhang X. A novel interleukin-8 polymorphism is associated with severe systemic lupus erythematosus nephritis.  Kidney Int. 2002;  31 261
  • 73 Manger K, Repp R, Spriewald B M. et al . Fcgamma receptor IIa polymorphism in Caucasian patients with systemic lupus erythematosus: association with clinical symptoms.  Arthritis Rheum. 1998;  31 1181
  • 74 Bennett R M, Peller J S, Merritt M M. Defective DNA-receptor function in systemic lupus erythematosus and related diseases: evidence for an autoantibody influencing cell physiology.  Lancet. 1986;  31 186
  • 75 Bennett R M, Kotzin B L, Merritt M J. DNA receptor dysfunction in systemic lupus erythematosus and kindred disorders. Induction by anti-DNA antibodies, antihistone antibodies, and antireceptor antibodies.  J Exp Med. 1987;  31 850
  • 76 Frank M M, Hamburger M I, Lawley T J. et al . Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus.  N Engl J Med. 1979;  31 518
  • 77 Taylor R P, Horgan C, Buschbacher R. et al . Decreased complement mediated binding of antibody/3H-dsDNA immune complexes to the red blood cells of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies.  Arthritis Rheum. 1983;  31 736
  • 78 Wilson J G, Fearon D T. Altered expression of complement receptors as a pathogenetic factor in systemic lupus erythematosus.  Arthritis Rheum. 1984;  31 1321
  • 79 Robey F A, Jones K D, Steinberg A D. C-reactive protein mediates the solubilization of nuclear DNA by complement in vitro.  J Exp Med. 1985;  31 1344
  • 80 Rynes R I. Inherited complement deficiency states and SLE.  Clin Rheum Dis. 1982;  31 29
  • 81 Christiansen F T, Zhang W J, Griffiths M. et al . Major histocompatibility complex (MHC) complement deficiency, ancestral haplotypes and systemic lupus erythematosus (SLE): C4 deficiency explains some but not all of the influence of the MHC.  J Rheumatol. 1991;  31 1350
  • 82 Morgan B P, Walport M J. Complement deficiency and disease.  Immunol Today. 1991;  31 301
  • 83 Walport M J. Complement. Second of two parts.  N Engl J Med. 2001;  31 1140
  • 84 Amoura Z, Koutouzov S, Chabre H. et al . Presence of antinucleosome autoantibodies in a restricted set of connective tissue diseases: antinucleosome antibodies of the IgG3 subclass are markers of renal pathogenicity in systemic lupus erythematosus.  Arthritis Rheum. 2000;  31 76

Hanns-Martin Lorenz

Med. Klinik V, Abt. f. Rheumatol. Univ. Klinilum Heidelberg

Im Neuenheimer Feld 410

69210 Heidelberg

Email: hannes.lorenz@med.uni-heidelberg.de

    >