Aktuelle Rheumatologie 2006; 31(1): 24-32
DOI: 10.1055/s-2005-858827
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Pathomechanismen von HLA-B27 und anderen Genen bei Spondyloarthritiden

Molecular Pathomechanisms of HLA-B27 and Other Genes in SponyloarthropathiesH. Appel1 , J. Sieper1 , M. Rudwaleit1
  • 1Medizinische Klinik I, Rheumatologie, Campus Benjamin Franklin, Charité Berlin
Further Information

Publication History

Publication Date:
15 February 2006 (online)

Zusammenfassung

Der Oberflächenrezeptor HLA-B27 wird bei 85 - 95 % aller Patienten mit ankylosierender Spondylitis (AS) nachgewiesen und ist damit das MHC-Klasse-I-Molekül mit der höchsten Krankheitsassoziation beim Menschen. Es besteht eine starke Korrelation zwischen dem Auftreten von HLA-B27, der Prävalenz von ankylosierender Spondylitis und den anderen Spondyloarthritiden. Es wird ferner vermutet, dass zusätzliche Umweltfaktoren eine Rolle bei der Krankheitsentstehung spielen. Hierbei scheinen vor allem Bakterien und deren Interaktion mit HLA-B27 von großer Bedeutung zu sein. Obwohl bereits zahlreiche Krankheitsmodelle zur Rolle von HLA-B27 und Mikroben bei der AS vorgestellt worden sind, bleibt die Pathogenese dieser Erkrankung ungeklärt. HLA-B27 ist zwar das Gen mit der höchsten bisher dargelegten Assoziation mit AS, es gibt aber daneben noch eine sehr große Anzahl weiterer Gene, die auch mit der AS und den anderen Spondyloarthritiden assoziiert zu sein scheinen. Die Bedeutung von HLA-B27 und der anderen bisher bekannten assoziierten Gene werden in dieser Arbeit vorgestellt und bewertet.

Abstract

The surface receptor HLA-B27 is found in 85 - 95 % of patients with ankylosing spondylitis (AS), which is one of the strongest associations between MHC class I molecules and human disease. There is a high correlation between the overall HLA-B27 prevalence in a population and the prevalence of ankylosing spondylitis and other spondyloarthropathies, suggesting that additional environmental factors play an important role in the development of the disease. Among these, bacteria and their interaction with HLA-B27 appear to be the most important factors. To date, numerous models have been proposed, attempting to explain the association of AS with HLA-B27 and bacteria. The pathogenetic mechanisms, however remain unsolved. Although HLA-B27 is the major gene involved in susceptibility to AS, several other genes appear to be linked to AS and the spondyloarthritic group of diseases. In this paper, the significance of HLA-B27 and other known associated genes is presented and discussed.

Literatur

  • 1 Braun J, Sieper J. Spondyloarthritides and related arthritides. DA Warrell, TM Gox, JD Firth, EJ Benz Oxford Textbook of Medicine (Editors: DA) New York; Oxford University Press 2003: 43-53
  • 2 Brewerton D A, Hart F D, Nicholls A. et al . Ankylosing spondylitis and HL-A 27.  Lancet. 1973;  31 904-907
  • 3 Brown M A, Crane A M, Wordsworth B P. Genetic aspects of susceptibility, severity, and clinical expression in ankylosing spondylitis.  Curr Opin Rheumatol. 2002;  31 354-360
  • 4 Brown M A, Laval S H, Brophy S. et al . Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis.  Ann Rheum Dis. 2000;  31 883-886
  • 5 Brown M A, Kennedy L G, MacGregor A J. et al . Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment.  Arthritis Rheum. 1997;  31 1823-1828
  • 6 Khan M A. Spondyloarthropathies.  Curr Opin Rheumatol. 1998;  31 279-281
  • 7 van der Linden S M, Valkenburg H A, de Jongh B M. et al . The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population.  Arthritis Rheum. 1984;  31 241-249
  • 8 Braun J, Bollow M, Remlinger G. et al . Prevalence of spondylarthropathies in HLA B27-positive and -negative blood donors.  Arthritis Rheum. 1998;  31 58-67
  • 9 Johnsen K, Gran J T, Dale K. et al . The prevalence of ankylosing spondylitis among Norwegian Samis (Lapps).  J Rheumatol. 1992;  31 1591-1594
  • 10 Ball E J, Khan M A. HLA-B27 polymorphism.  Joint Bone Spine. 2001;  31 378-382
  • 11 Fiorillo M T, Greco G, Maragno M. et al . The naturally occurring polymorphism Asp116®His116, differentiating the ankylosing spondylitis-associated HLA-B*2705 from the non-associated HLA-B*2709 subtype, influences peptide-specific CD8 T cell recognition.  Eur J Immunol. 1998;  31 2508-2516
  • 12 D’Amato M, Fiorillo M T, Carcassi C. et al . Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis.  Eur J Immunol. 1995;  31 3199-3201
  • 13 Leirisalo-Repo M. Prognosis, course of disease, and treatment of the spondyloarthropathies.  Rheum Dis Clin North Am. 1998;  31 737-751, viii
  • 14 Olhagen B. Urogenital syndromes and spondarthritis.  Br J Rheumatol. 1983;  31 33-40
  • 15 Claudepierre P, Gueguen A, Ladjouze A. et al . Predictive factors of severity of spondyloarthropathy in North Africa.  Br J Rheumatol. 1995;  31 1139-1145
  • 16 Lau C S, Burgos-Vargas R, Louthrenoo W. et al . Features of spondyloarthritis around the world.  Rheum Dis Clin North Am. 1998;  31 753-770
  • 17 Huang F, Zhang J, Zhu J. et al . Juvenile spondyloarthropathies: the Chinese experience.  Rheum Dis Clin North Am. 2003;  31 531-547
  • 18 Hajjaj-Hassouni N, Maetzel A, Dougados M. et al . Comparison of patients evaluated for spondylarthropathy in France and Morocco.  Rev Rhum Ed Fr. 1993;  31 420-425
  • 19 Sieper J, Braun J, Kingsley G H. Report on the Fourth International Workshop on Reactive Arthritis.  Arthritis Rheum. 2000;  31 720-734
  • 20 Purrmann J, Zeidler H, Bertrams J. et al . HLA antigens in ankylosing spondylitis associated with Crohn’s disease. Increased frequency of the HLA phenotype B27, B44.  J Rheumatol. 1988;  31 1658-1661
  • 21 Mielants H, Veys E M, Cuvelier C. et al . Ileocolonoscopic findings in seronegative spondylarthropathies.  Br J Rheumatol. 1988;  31 95-105
  • 22 Taurog J D, Richardson J A, Croft J T. et al . The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats.  J Exp Med. 1994;  31 2359-2364
  • 23 Rath H C, Schultz M, Freitag R. et al . Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice.  Infect Immun. 2001;  31 2277-2285
  • 24 Kuon W, Sieper J. Identification of HLA-B27-restricted peptides in reactive arthritis and other spondyloarthropathies: computer algorithms and fluorescent activated cell sorting analysis as tools for hunting of HLA-B27-restricted chlamydial and autologous crossreactive peptides involved in reactive arthritis and ankylosing spondylitis.  Rheum Dis Clin North Am. 2003;  31 595-611
  • 25 Hermann E, Yu D T, Meyer z um Buschenfelde KH. et al . HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis.  Lancet. 1993;  31 646-650
  • 26 Ugrinovic S, Mertz A, Wu P. et al . A single nonamer from the Yersinia 60-kDa heat shock protein is the target of HLA-B27-restricted CTL response in Yersinia-induced reactive arthritis.  J Immunol. 1997;  31 5715-5723
  • 27 Kuon W, Holzhütter H G, Appel H. Identification of HLA-B27-Restricted Peptides from the Chlamydia trachomatis Proteome with Possible Relevance to HLA-B27-Associated Diseases.  J Immunol. 2001;  31 4738-4746
  • 28 Fiorillo M T, Maragno M, Butler R. et al . CD8 + T-cell autoreactivity to an HLA-B27-restricted self-epitope correlates with ankylosing spondylitis.  J Clin Invest. 2000;  31 47-53
  • 29 McGonagle D, Gibbon W, Emery P. Classification of inflammatory arthritis by enthesitis.  Lancet. 1998;  31 1137-1140
  • 30 Poole A R. The histopathology of ankylosing spondylitis: are there unifying hypotheses?.  Am J Med Sci. 1998;  31 228-233
  • 31 Maksymowych W P. Ankylosing spondylitis-at the interface of bone and cartilage.  J Rheumatol. 2000;  31 2295-2301
  • 32 Braun J, Khan M A, Sieper J. Enthesitis and ankylosis in spondyloarthropathy: what is the target of the immune response?.  Ann Rheum Dis. 2000;  31 985-994
  • 33 Zhang Y. Animal models of inflammatory spinal and sacroiliac joint diseases.  Rheum Dis Clin North Am. 2003;  31 631-645
  • 34 Kuon W, Kuhne M, Busch D H. et al . Identification of novel human aggrecan T cell epitopes in HLA-B27 transgenic mice associated with spondyloarthropathy.  J Immunol. 2004;  31 4859-4866
  • 35 Appel H, Kuon W, Kuhne M. et al . The solvent-inaccessible Cys67 residue of HLA-B27 contributes to T cell recognition of HLA-B27/peptide complexes.  J Immunol. 2004;  31 6564-6573
  • 36 Zou J, Zhang Y, Thiel A. et al . Predominant cellular immune response to the cartilage autoantigenic G1 aggrecan in ankylosing spondylitis and rheumatoid arthritis.  Rheumatology. 2003;  31 846-855
  • 37 Zou J, Appel H, Rudwaleit M. et al . Analysis of the CD8 + T cell response to the G1 domain of aggrecan in ankylosing spondylitis.  Ann Rheum Dis. 2004;  31
  • 38 Gao X M, Wordsworth P, McMichael A. Collagen-specific cytotoxic T lymphocyte responses in patients with ankylosing spondylitis and reactive arthritis.  Eur J Immunol. 1994;  31 1665-1670
  • 39 Atagunduz P, Appel H, Kuon W. et al . HLA-B27-restricted CD8 + T cell response to cartilage-derived self peptides in ankylosing spondylitis.  Arthritis Rheum. 2005;  31 892-901
  • 40 May E, Dulphy N, Frauendorf E. et al . Conserved TCR beta chain usage in reactive arthritis; evidence for selection by a putative HLA-B27-associated autoantigen.  Tissue Antigens. 2002;  31 299-308
  • 41 Yu D, Kuipers J G. Role of bacteria and HLA-B27 in the pathogenesis of reactive arthritis.  Rheum Dis Clin North Am. 2003;  31 21-36, v-vi
  • 42 Penttinen M A, Heiskanen K M, Mohapatra R. et al . Enhanced intracellular replication of Salmonella enteritidis in HLA-B27-expressing human monocytic cells: dependency on glutamic acid at position 45 in the B pocket of HLA-B27.  Arthritis Rheum. 2004;  31 2255-2263
  • 43 Colbert R A. The immunobiology of HLA-B27: variations on a theme.  Curr Mol Med. 2004;  31 21-30
  • 44 Allen R L, O’Callaghan C A, McMichael A J. et al . Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure.  J Immunol. 1999;  31 5045-5048
  • 45 Kollnberger S, Bird L A, Roddis M. et al . HLA-B27 heavy chain homodimers are expressed in HLA-B27 transgenic rodent models of spondyloarthritis and are ligands for paired Ig-like receptors.  J Immunol. 2004;  31 1699-1710
  • 46 Boyle L H, Goodall J C, Opat S S. et al . The recognition of HLA-B27 by human CD4(+) T lymphocytes.  J Immunol. 2001;  31 2619-2624
  • 47 Boyle L H, Hill n nn, Gaston J S. Breaking the rules: the unconventional recognition of HLA-B27 by CD4 + T lymphocytes as an insight into the pathogenesis of the spondyloarthropathies.  Rheumatology. 2003;  31 404-412
  • 48 Sims A M, Wordsworth B P, Brown M A. Genetic susceptibility to ankylosing spondylitis.  Curr Mol Med. 2004;  31 13-20
  • 49 Rudwaleit M, Höhler T. Cytokine gene polymorphisms relevant for spondyloarthropathies.  Curr Opin Rheumtol. 2001;  31 250-254
  • 50 Laval S H, Timms A, Edwards S. et al . Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci.  Am J Hum Genet. 2001;  31 918-926
  • 51 Zhang G, Luo J, Bruckel J. et al . Genetic studies in familial ankylosing spondylitis susceptibility.  Arthritis Rheum. 2004;  31 2246-2254
  • 52 Martin T M, Zhang G, Luo J. et al . A locus on chromosome 9 p predisposes to a specific disease manifestation, acute anterior uveitis, in ankylosing spondylitis, a genetically complex, multisystem, inflammatory disease.  Arthritis Rheum. 2005;  31 269-274
  • 53 Hoyle E, Laval S H, Calin A. et al . The X-chromosome and susceptibility to ankylosing spondylitis.  Arthritis Rheum. 2000;  31 1353-1355
  • 54 Yin Z, Braun J, Neure L. et al . Crucial role of interleukin-10/interleukin-12 balance in the regulation of the type 2 T helper cytokine response in reactive arthritis.  Arthritis Rheum. 1997;  31 1788-1797
  • 55 Braun J, Yin Z, Spiller I. et al . Low secretion of tumor necrosis factor alpha, but no other Th1 or Th2 cytokines, by peripheral blood mononuclear cells correlates with chronicity in reactive arthritis.  Arthritis Rheum. 1999;  31 2039-2044
  • 56 Rudwaleit M, Siegert S, Yin Z. et al . Low T cell production of TNFalpha and IFNgamma in ankylosing spondylitis: its relation to HLA-B27 and influence of the TNF-308 gene polymorphism.  Ann Rheum Dis. 2001;  31 36-42
  • 57 Tuokko J, Koskinen S, Westman P. et al . Tumour necrosis factor microsatellites in reactive arthritis.  Br J Rheumatol. 1998;  31 1203-1206
  • 58 Hohler T, Schaper T, Schneider P M. et al . Association of different tumor necrosis factor alpha promoter allele frequencies with ankylosing spondylitis in HLA-B27 positive individuals.  Arthritis Rheum. 1998;  31 1489-1492
  • 59 Kaluza W, Leirisalo-Repo M, Märker-Hermann E. et al . IL10.G microsatellites mark promoter haplotypes associated with protection against the development of reactive arthritis in Finnish patients.  Arthritis Rheum. 2001;  31 1209-1214
  • 60 Goedecke V, Crane A M, Jaakkola E. et al . Interleukin 10 polymorphisms in ankylosing spondylitis.  Genes Immun. 2003;  31 74-76
  • 61 Howe H S, Cheung P L, Kong K O. et al . Transforming growth factor beta-1 and gene polymorphisms in oriental ankylosing spondylitis.  Rheumatology. 2005;  31 51-54
  • 62 Jaakkola E, Crane A M, Laiho K. et al . The effect of transforming growth factor beta1 gene polymorphisms in ankylosing spondylitis.  Rheumatology. 2004;  31 32-38
  • 63 McGarry F, Neilly J, Anderson N. et al . A polymorphism within the interleukin 1 receptor antagonist (IL-1Ra) gene is associated with ankylosing spondylitis.  Rheumatology. 2001;  31 1359-1364
  • 64 van der Paardt M, Crusius J B, Garcia-Gonzalez M A. et al . Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms in ankylosing spondylitis.  Rheumatology. 2002;  31 1419-1423
  • 65 Maksymowych W P, Reeve J P, Reveille J D. et al . High-throughput single-nucleotide polymorphism analysis of the IL1RN locus in patients with ankylosing spondylitis by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.  Arthritis Rheum. 2003;  31 2011-2018
  • 66 Timms A E, Crane A M, Sims A M. et al . The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis.  Am J Hum Genet. 2004;  31 587-595
  • 67 Djouadi K, Nedelec B, Tamouza R. et al . EUROAS. Interleukin 1 gene cluster polymorphisms in multiplex families with spondylarthropathies.  Cytokine. 2001;  31 98-103
  • 68 Jin L, Zhang G, Akey J M. et al . Lack of linkage of IL1RN genotypes with ankylosing spondylitis susceptibility.  Arthritis Rheum. 2004;  31 3047-3048
  • 69 Crane A M, Bradbury L, van Heel D A. et al . Role of NOD2 variants in spondylarthritis.  Arthritis Rheum. 2002;  31 1629-1633
  • 70 Peeters H, Vander C ruyssen B, Laukens D. et al . Radiological sacroiliitis, a hallmark of spondylitis, is linked with CARD15 gene polymorphisms in patients with Crohn’s disease.  Ann Rheum Dis. 2004;  31 1131-1134
  • 71 van der Paardt M, Crusius J B, de Koning M H. et al . CARD15 gene mutations are not associated with ankylosing spondylitis.  Genes Immun. 2003;  31 77-78
  • 72 Ferreiros-Vidal I, Amarelo J, Barros F. et al . Lack of association of ankylosing spondylitis with the most common NOD2 susceptibility alleles to Crohn’s disease.  J Rheumatol. 2003;  31 102-104
  • 73 Brown M A, Edwards S, Hoyle E. et al . Polymorphisms of the CYP2D6 gene increase susceptibility to ankylosing spondylitis.  Hum Mol Genet. 2000;  31 1563-1566
  • 74 Yen J H, Tsai W C, Chen C J. et al . Cytochrome P450 1A1 and manganese superoxide dismutase genes polymorphisms in ankylosing spondylitis.  Immunol Lett. 2003;  31 113-116
  • 75 van der Paardt M, Crusius J B, de Koning M H. et al . No evidence for involvement of the Toll-like receptor 4 (TLR4) A896G and CD14-C260T polymorphisms in susceptibility to ankylosing spondylitis.  Ann Rheum Dis. 2005;  31 235-238
  • 76 Jin L, Weisman M, Zhang G. et al . Lack of association of matrix metalloproteinase 3 (MMP3) genotypes with ankylosing spondylitis susceptibility and severity.  Rheumatology. 2005;  31 55-60
  • 77 Timms A E, Zhang Y, Bradbury L. et al . Investigation of the role of ANKH in ankylosing spondylitis.  Arthritis Rheum. 2003;  31 2898-2902
  • 78 Tsui H W, Inman R D, Paterson A D. et al . ANKH variants associate with ankylosing spondylitis: gender differences.  Arthritis Res Ther. 2005;  31 R513-R525

Dr. Heiner Appel

Medizinische Klinik I, Rheumatologie, Campus Benjamin Franklin, Charité Berlin

Hindenburgdamm 30

12200 Berlin

Phone: ++ 49/30/84 45-45 47

Fax: ++ 49/30/84 45-45 82

Email: heiner.appel@charite.de

    >