Aktuelle Rheumatologie 2006; 31(1): 33-40
DOI: 10.1055/s-2005-858835
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Pathogenese primär systemischer Vaskulitiden

Molecular Pathogenesis of Primary Systemic VasculitidesP. Lamprecht1
  • 1Poliklinik für Rheumatologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, und Rheumaklinik Bad Bramstedt
Further Information

Publication History

Publication Date:
15 February 2006 (online)

Zusammenfassung

Die molekulare Pathogenese verschiedener primär systemischer Vaskulitiden weist bedeutende Unterschiede auf. Bei der Riesenzellarteriitis scheint die Aktivierung ortsständiger dendritischer Zellen in der Adventitia ein frühes Ereignis zu sein. Nachfolgend werden CD4+-Th1-Typ-Zellen über Vasa vasorum rekrutiert, die durch ihre Zytokinproduktion Makrophagen aktivieren und zur Riesenzellentwicklung beitragen. Bei der Takayasu-Arteriitis werden im zellulären Infiltrat in der Arterienwand Perforin exprimierende, oligoklonale γδ-T-Zellen, CD8+-T-Zellen und NK-Zellen sowie einzelne CD4+-T-zellen und Makrophagen nachgewiesen. Inwieweit infektiöse Erreger für die Aktivierung dendritischer Zellen und die T-Zellaktivierung und -rekrutierung verantwortlich sind, ist Gegenstand von Diskussionen. Bei Immunkomplex-Vaskulitiden trägt die durch Immunkomplexe und C1q-Komplement verlangsamte P-Selektin-vermittelte Rollgeschwindigkeit in den Kapillaren zu einer verstärkten Extravasation von Neutrophilen und anderen Leukozyten bei. Dies begünstigt die Fc-gamma-Rezeptor-vermittelte Erkennung von abgelagerten Immunkomplexen und die nachfolgende endothelnahe Neutrophilenaktivierung und -degranulation mit Endothelschädigung. Bei den antineutrophile zytoplasmatische Autoantikörper (ANCA-) assoziierten Vaskulitiden kommt es durch die Interaktion von ANCA mit Neutrophilen zur Endothelschädigung. Neuere Untersuchungen weisen darauf hin, dass die Expansion von CD28--Th1-Typ-Zellen sowie erste Hinweise auf eine mögliche Ausbildung ektoper lymphatischer Strukturen im Granulom bei der Wegenerschen Granulomatose im Zusammenhang mit der Persistenz der Autoimmunreaktion gegen das „Wegenersche Autoantigen” Proteinase 3 stehen könnten.

Abstract

The molecular pathogenesis of primary systemic vasculitides is characterized by substantial differences in the underlying pathophysiological mechanisms. Activation of dendritic cells in the adventitia seems to be an early event in giant cell arteritis. Subsequently, CD4+ Th1-type cells are recruited via the vasa vasorum. Cytokine release of CD4+ Th1-type cells contributes to macrophage activation and giant cell formation. The cellular infiltrate in the arterial wall in Takayasu arteritis consists of perforin producing, oligoclonal γδ T-cells, CD8+ T-cells, NK-cells, CD4+ T-cells, and macrophages. Whether infectious agents activate dendritic cells and stimulate T-cell activation and recruitment, remains to be discussed. Slowing-down of P-selectin mediated rolling by immune-complexes and C1 q complement induces enhanced extravasation of neutrophils and other leukocytes in immune-complex vasculitides. This process facilitates Fc-gamma mediated recognition of deposited immune-complexes and subsequent neutrophil activation, degranulation, and endothelial damage. The interaction of anti-neutrophil cytoplasmic autoantibodies (ANCA) with neutrophils and subsequent endothelial damage are important steps in the initiation of ANCA-associated vasculitides. Recent studies indicate that both the expansion of CD28- Th1-type cells and the possible formation of ectopic lymphatic structures in granulomatous lesions, might be correlated with the sustained autoimmune reaction to “Wegener’s autoantigen” proteinase 3 in Wegener’s granulomatosis.

Literatur

  • 1 Allen A C, Willis F R, Beattie T J. et al . Abnormal IgA glycosylation in Henoch-Schonlein purpura restricted to patients with clinical nephritis.  Nephrol Dial Transplant. 1998;  31 930-934
  • 2 Arce S, Cassese G, Hauser A. et al . The role of long-lived plasma cells in autoimmunity.  Immunobiology. 2002;  31 558-562
  • 3 Bacon P A. The spectrum of Wegener’s granulomatosis and disease relapse.  N Engl J Med. 2005;  31 330-332
  • 4 Ben-Smith A, Dove S K, Martin A. et al . Antineutrophil cytoplasm autoantibodies from patients with systemic vasculitis activate neutrophils through distinct signaling cascades: comparison with conventional Fc-gamma receptor ligation.  Blood. 2001;  31 1448-1455
  • 5 Bour-Jordan H, Salomon B L, Thompson H. et al . Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells.  J Clin Invest. 2004;  31 979-987,
  • 6 Brack A, Geisler A, Martinez-Taboada V M. et al . Giant cell vasculitis is a T cell-dependent disease.  Mol Med. 1997;  31 530-543
  • 7 Brouet J C, Clauvel J P, Danon F. et al . Biologic and clinical significance of cryoglobulins. A report of 86 cases.  Am J Med. 1974;  31 775-788
  • 8 Brouwer E, Huitema M G, Klok P A. et al . Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model.  J Exp Med. 1993;  31 905-914
  • 9 Calderwood J W, Williams J M, Morgan M D. et al . ANCA induces beta2 integrin and CXC chemokine-dependent neutrophil-endothelial cell interactions that mimic those of highly cytokine-activated endothelium.  J Leukoc Biol. 2005;  31 33-43
  • 10 Cid M C, Cebrian M, Font C. et al . Cell adhesion molecules in the development of inflammatory infiltrates in giant cell arteritis: inflammation-induced angiogenesis as the preferential site of leukocyte-endothelial cell interactions.  Arthritis Rheum. 2000;  31 184-194
  • 11 Claudy A. Pathogenesis of leukocytoclastic vasculitis.  Eur J Dermatol. 1998;  31 75-79
  • 12 Csernok E, Lüdemann J, Gross W L. et al . Ultrastructural localization of proteinase 3, the target antigen of anti-cytoplasmic antibodies circulating in Wegener’s granulomatosis.  Am J Pathol. 1990;  31 1113-1120
  • 13 Csernok E, Ernst M, Schmitt W H. et al . Activated neutrophils express proteinase 3 on their plasma membrane in vitro and in vivo.  Clin Exp Immunol. 1994;  31 244-250
  • 14 Falk R J, Terrell R S, Charles L A. et al . Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro.  Proc Natl Acad Sci USA. 1990;  31 4115-4119
  • 15 Ferri C, Zignego A L, Pileri S A. Cryoglobulins.  J Clin Pathol. 2002;  31 4-13
  • 16 Finger E B, Puri K D, Alon R. et al . Adhesion through L-selectin requires a threshold hydrodynamic shear.  Nature. 1996;  31 266-269
  • 17 Fornasieri A, Li M, Armelloni S. et al . Glomerulonephritis induced by human IgMK-IgG cryoglobulins in mice.  Lab Invest. 1993;  31 531-540
  • 18 Fornasieri A, Armelloni S, Bernasconi P. et al . High binding of immunoglobulin M kappa rheumatoid factor from type II cryoglobulins to cellular fibronectin: a mechanism for induction of in situ immune complex glomerulonephritis?.  Am J Kidney Dis. 1996;  31 476-483
  • 19 Fornasieri A, Tazzari S, Li M. et al . Electron microscopy study of genesis and dynamics of immunodeposition in IgMκ-IgG cryoglobulin-induced glomerulonephritis in mice.  Am J Kidney Dis. 1998;  31 435-442
  • 20 Genereau T, Lortholary O, Pottier M A. et al . Temporal artery biopsy: a diagnostic tool for systemic necrotizing vasculitis. French Vasculitis Study Group.  Arthritis Rheum. 1999;  31 2674-2681
  • 21 Gross W L. Primär systemische Vaskulitiden.  Internist. 1999;  31 779-794
  • 22 Hellmich B, Csernok E, Gross W L. 20 years with ANCA (antineutrophil cytoplasmic autoantibodies): from seromarker to a major pathogenic player in vasculitis.  J Leukocyte Biol. 2003;  31 1-2
  • 23 Huugen D, Xiao H, van Esch A. et al . Aggravation of Anti-Myeloperoxidase antibody-Induced glomerulonephritis by bacterial lipopolysaccharide: Role of tumor necrosis factor-alpha.  Am J Pathol. 2005;  31 47-58
  • 24 Jennette J C, Falk R J, Andrassy K. et al . Nomenclature of systemic vasculitides. Proposal of an international consensus conference.  Arthritis Rheum. 1994;  31 187-192
  • 25 Jennette J C, Falk R J. Small-vessel vasculitis.  New Engl J Med. 1997;  31 1512-1523
  • 26 Kaiser M, Weyand C M, Bjornsson J. et al . Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis.  Arthritis Rheum. 1998;  31 623-633
  • 27 Kaiser M, Younge B, Bjornsson J. et al . Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells.  Am J Pathol. 1999;  31 765-774
  • 28 Katayama Y, Hidalgo A, Chang J. et al . CD44 is a physiological E-selectin ligand on neutrophils.  J Exp Med. 2005;  31 1183-1189
  • 29 Kettritz R, Choi M, Butt W. et al . Phosphatidylinositol 3-kinase controls antineutrophil cytoplasm antibodies-induced respriratory burst in human neutrophils.  J Am Soc Nephrol. 2002;  31 1740-1749
  • 30 Kocher M, Siegel M E, Edberg J C. et al . Cross-linking of Fc gamma receptor IIa and Fc gamma receptor IIIb induces different proadhesive phenotypes on human neutrophils.  J Immunol. 1997;  31 3940-3948
  • 31 Kocher M, Edberg J C, Fleit H B. et al . Antineutrophil cytoplasm antibodies preferentially engage Fc gammaRIIIb on human neutrophils.  J Immunol. 1998;  31 6909-6914
  • 32 Komocsi A, Lamprecht P, Csernok E. et al . Peripheral blood and granuloma CD4 +CD28- T-cells are a major source of IFN-γ and TNF-α in Wegener`s granulomatosis.  Am J Pathol. 2002;  31 1717-1724
  • 33 Krupa W M, Dewan M, Jeon M S. et al . Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis.  Am J Pathol. 2002;  31 1815-1823
  • 34 Kumar C hauhan S, Kumar T ripathy N, Sinha N. et al . Cellular and humoral immune responses to mycobacterial heat shock protein-65 and its human homologue in Takayasu’s arteritis.  Clin Exp Immunol. 2004;  31 547-553
  • 35 Laetsch B, Hofbauer G, Kempf W. et al . Atypical poorly differentiated cutaneous T-cell lymphoma with an angiocentric growth pattern presenting histologically as vasculitis.  Dermatology. 2005;  31 341-345
  • 36 Lamprecht P, Moosig F, Csernok E. et al . CD28 negative T cells are enriched in granulomatous lesions of the respiratory tract in Wegener’s granulomatosis.  Thorax. 2001;  31 751-757
  • 37 Lamprecht P, Brühl H, Erdmann A. et al . Differences in CCR5 expression on peripheral blood CD4 +CD28- T-cells and in granulomatous lesions between localized and generalized Wegener’s granulomatosis.  Clin Immunol. 2003;  31 1-7
  • 38 Lamprecht P. Off balance: T-cells in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides.  Clin Exp Immunol. 2005;  31 201-210
  • 39 Lang K S, Recher M, Junt T. et al . Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease.  Nat Med. 2005;  31 138-145
  • 40 Ma-Krupa W, Jeon M S, Spoerl S. et al . Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis.  J Exp Med. 2004;  31 173-183
  • 41 Michalak T. Immune complexes of hepatitis B surface antigen in the pathogenesis of periarteritis nodosa. A study of seven necropsy cases.  Am J Pathol. 1978;  31 619-632
  • 42 Muller K obold AC, Kallenberg C G, Tervaert J W. Leucocyte membrane expression of proteinase 3 correlates with disease activity in patients with Wegener’s granulomatosis.  Br J Rheumatol. 1998;  31 901-907
  • 43 Myklebust G, Wilsgaard T, Jacobsen B K. et al . No increased frequency of malignant neoplasms in polymyalgia rheumatica and temporal arteritis. A prospective longitudinal study of 398 cases and matched population controls.  J Rheumatol. 2002;  31 2143-2147
  • 44 Noris M, Daina E, Gamba S. et al . Interleukin-6 and RANTES in Takayasu arteritis: a guide for therapeutic decisions?.  Circulation. 1999;  31 55-60
  • 45 Paydas S, Zorludemir S. Leukaemia cutis and leukaemic vasculitis.  Br J Dermatol. 2000;  31 773-779
  • 46 Pfister H, Ollert M, Fröhlich L F. et al . Anti-neutrophil cytoplasmic autoantibodies (ANCA) against the murine homolog of proteinase 3 (Wegener’s autoantigen) are pathogenic in vivo.  Blood. 2004;  31 1411-1418
  • 47 Porges A J, Redecha P B, Kimberly W T. et al . Antineutrophil cytoplasmic antibodies engage and activate human neutrophils via Fc gamma RIIa.  J Immunol. 1994;  31 1271-1280
  • 48 Radford D J, Luu N T, Hewins P. et al . Antineutrophil antibodies stabilze adehesion and promote migration of flowing neutrophils on endothelial cells.  Arthritis Rheum. 2001;  31 2851-2861
  • 49 Regan M J, Wood B J, Hsieh Y H. et al . Temporal arteritis and Chlamydia pneumoniae: failure to detect the organism by polymerase chain reaction in ninety cases and ninety controls.  Arthritis Rheum. 2002;  31 1056-1060
  • 50 Reinhold-Keller E, Herlyn K, Wagner-Bastmeyer R. et al . No difference in the incidences of vasculitides between north and south Germany: first results of the german vasculitis register.  Rheumatology. 2002;  31 540-549
  • 51 Reinhold-Keller E, Herlyn K, Wagner-Bastmeyer R. et al . Stable incidence of primary systemic vasculitides over five years: results from the German vasculitis register.  Arthritis Rheum. 2005;  31 93-99
  • 52 Reumaux D, De Boer M, Meijer A B. et al . Expression of myeloperoxidase (MPO) in neutrophils is necessary for their activation by anti-neutrophil cytoplasmic autoantibodies (ANCA) against MPO.  J Leukocyte Biol. 2003;  31 841-849
  • 53 Savage C O, Harper L, Adu D. Primary systemic vasculitis.  Lancet. 1997;  31 553-558
  • 54 Sansonno D, Lauletta G, Nisi L. et al . Non-enveloped HCV core protein as constitutive antigen of cold-precipitable immune complexes in type II mixed cryoglobulinaemia.  Clin Exp Immunol. 2003;  31 275-282
  • 55 Sansonno D, Lauletta G, Montrone M. et al . Hepatitis C virus RNA and core protein in kidney glomerular and tubular structures isolated with laser capture microdissection.  Clin Exp Immunol. 2005;  31 498-506
  • 56 Schlesier M, Kaspar T, Gutfleisch J. et al . Activated CD4 + and CD8 + T-cell subsets in Wegener’s granulomatosis.  Rheumatol Int. 1995;  31 213-219
  • 57 Schreiber A, Busjahn A, Luft F C. et al . Membrane expression of proteinase 3 is genetically determined.  J Am Soc Nephrol. 2003;  31 68-75
  • 58 Schreiber A, Luft F C, Kettritz R. Membrane proteinase 3 expression and ANCA-induced neutrophil activation.  Kidney Int. 2004;  31 2172-2183
  • 59 Seko Y, Minota S, Kawasaki A. et al . Perforin-secreting killer cell infiltration and expression of a 65-kD heat-shock protein in aortic tissue of patients with Takayasu’s arteritis.  J Clin Invest. 1994;  31 750-758
  • 60 Seko Y, Takahashi N, Tada Y. et al . Restricted usage of T-cell receptor Vgamma-Vdelta genes and expression of costimulatory molecules in Takayasu’s arteritis.  Int J Cardiol. 2000;  31 S77-S87
  • 61 Seko Y, Sugishita K, Sato O. et al . Expression of costimulatory molecules (4 - 1BBL and Fas) and major histocompatibility class I chain-related A (MICA) in aortic tissue with Takayasu’s arteritis.  J Vasc Res. 2004;  31 84-90
  • 62 Sneller M C. Rituximab and Wegener’s granulomatosis: are B cells a target in vasculitis treatment?.  Arthritis Rheum. 2005;  31 1-5
  • 63 Stokol T, O’Donnell P, Xiao L. et al . C1 q governs deposition of circulating immune complexes and leukocyte Fcgamma receptors mediate subsequent neutrophil recruitment.  J Exp Med. 2004;  31 835-846
  • 64 Takeda N, Takahashi T, Seko Y. et al . Takayasu myocarditis mediated by cytotoxic T lymphocytes.  Intern Med. 2005;  31 256-260
  • 65 Tatsis E, Reinhold-Keller E, Steindorf K. et al . Wegener’s granulomatosis associated with renal cell carcinoma.  Arthritis Rheum. 1999;  31 751-756
  • 66 van Rossum A P, Rarok A A, Huitema M G. et al . Constitutive membrane expression of proteinase 3 (PR3) and neutrophil activation by anti-PR3 antibodies.  J Leukoc Biol. 2004;  31 1162-1170
  • 67 Vogt S, Iking-Konert C, Hug F. et al . Shortening of telomeres: Evidence for replicative senescence of T cells derived from patients with Wegener’s granulomatosis.  Kidney Int. 2003;  31 2144-2151
  • 68 Von Andrian U H, Mackay C R. T-cell function and migration. Two sides of the same coin.  N Engl J Med. 2000;  31 1020-1034
  • 69 Voswinkel J, Müller A, Lamprecht P. Is PR3-ANCA formation initiated in Wegener’s granulomatosis lesions?.  Ann N Y Acad Sci. 2005;  31 1-8
  • 70 Wagner A D, Gerard H C, Fresemann T. et al . Detection of Chlamydia pneumoniae in giant cell vasculitis and correlation with the topographic arrangement of tissue-infiltrating dendritic cells.  Arthritis Rheum. 2000;  31 1543-1551
  • 71 Warrington K J, Scheithauer B W, Michet C J. Acute myeloid leukemia associated with necrotizing temporal arteritis.  J Rheumatol. 2003;  31 846-848
  • 72 Wei G, Yano S, Kuroiwa T. et al . Hepatitis C virus (HCV)-induced IgG-IgM rheumatoid factor (RF) complex may be the main causal factor for cold-dependent activation of complement in patients with rheumatic disease.  Clin Exp Immunol. 1997;  31 83-88
  • 73 Weyand C M, Schonberger J, Oppitz U. et al . Distinct vascular lesions in giant cell arteritis share identical T cell clonotypes.  J Exp Med. 1994;  31 951-960
  • 74 Weyand C M, Wagner A D, Bjornsson J. et al . Correlation of the topographical arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis.  J Clin Invest. 1996;  31 1642-1649
  • 75 Weyand C M, Kaiser M, Yang H. et al . Therapeutic effects of acetylsalicylic acid in giant cell arteritis.  Arthritis Rheum. 2002;  31 457-466
  • 76 Weyand C M, Goronzy J J. Giant cell arteritis and polymyalgia rheumatica.  Ann Intern Med. 2003;  31 505-515
  • 77 Xiao H, Heeringa P, Hu P. et al . Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice.  J Clin Invest. 2002;  31 955-963
  • 78 Yanaba K, Komura K, Horikawa M. et al . P-selectin glycoprotein ligand-1 is required for the development of cutaneous vasculitis induced by immune complex deposition.  J Leukoc Biol. 2004;  31 374-382
  • 79 Yang J J, Preston G A, Alcorta D A. et al . Expression profile of leukocyte genes activated by anti-neutrophil cytoplasmic autoantibodies (ANCA).  Kidney Int. 2002;  31 1638-1649
  • 80 Zeidman A, Horowitz A, Fradin Z. et al . Fulminant intravascular lymphoma presenting as fever of unknown origin.  Leuk Lymphoma. 2004;  31 1691-1693
  • 81 Zinkernagel R M, Hengartner H. Regulation of immune response by antigen.  Science. 2001;  31 251-253

Prof. Dr. med. Peter Lamprecht

Poliklinik für Rheumatologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck und Rheumaklinik Bad Bramstedt

Ratzeburger Allee 160

23538 Lübeck

Phone: ++ 49/4 51/5 00 23 68

Fax: ++ 49/4 51/5 00 36 50

Email: lamprecht@rheuma-zentrum.de

    >