Subscribe to RSS
DOI: 10.1055/s-2005-863708
Dyotropic Rearrangements of Tetraazafulvalenes - A New Approach to Aminosubstituted 1,4,5,8-Tetraazanaphthalenes
Publication History
Publication Date:
22 February 2005 (online)
Abstract
Tetraazafulvalenes 1 rearrange in the presence of Montmorillonite-clay to give strongly fluorescent 1,4,5,8-tetraazanaphthalenes of type 2. This observation agrees with that reported for the cross-conjugated systeme of indigo, thus indicating a dyotropic rearrangement has taken place. Inclusion of the extended π-electron-systeme of 1 should facilitate this symmetry forbidden [σ2+σ2]-process. Based on these results, some reactions of heterofulvalenes and -fulvenes reported in the literature can now be explained by dyotropic rearrangements. The easy rearrangement of 1 in the presence of K10 and DMF opens the way for the synthesis of hard to obtain ring-fused pyrazines of type 2.
Key words
heterocycles - dyotropic rearrangement - K10 clay - tetraazafulvalenes - pyrazinopyrazines
- 1
Reetz MT. Adv. Organomet. Chem. 1977, 16: 33 - 2
Erker G.Petrenz R. J. Chem. Soc., Chem. Commun. 1989, 345 - 3
Black TH.Hall JA.Sheu RG. J. Org. Chem. 1988, 53: 2371 - 4
Zhang X.Houk KN.Lin S.Danishefsky SJ. J. Am. Chem. Soc. 2003, 125: 5111 - 5
Reetz MT.Schmitz A.Holdgruen X. Tetrahedron Lett. 1989, 30: 5421 -
6a
Nakatsuji S.Amano Y.Kawamura H.Anzai H. J. Chem. Soc., Chem. Commun. 1994, 841 -
6b
Meline RL.Elsenbaumer RL. Synthesis 1997, 617 -
7a
Andreu R.Garin J.Orduna J.Royo JM. Tetrahedron Lett. 2000, 41: 5207 -
7b
Andreu R.Garin J.Orduna J.Royo JM. Tetrahedron Lett. 2001, 42: 875 - 8
Harnden RM.Ricker Moses P.Chambers JQ. J. Chem. Soc., Chem. Commun. 1977, 11 - 9
Haucke G.Graneß G. Angew. Chem. 1995, 107: 116 - 12
Käpplinger C.Beckert R.Günther W.Görls H. Liebigs Ann. Recl. 1997, 617 - 13
Kühn C.Beckert R.Grummt U.-W.Käpplinger C.Birckner E. Z. Naturwissenschaften 2004, 59b: 1 - 14
Hill JHM. J. Org. Chem. 1963, 28: 1931 - 15
Kuhn R.Skrabal P.Fischer PHH. Tetrahedron 1968, 24: 1843 - 16
Wanzlick H.-W.Kleiner H.-J.Lasch I.Füldner HU.Steinmaus H. Liebigs Ann. Chem. 1967, 708: 155 -
17a
Nyquist EB.Joullie MM. J. Chem. Soc. C 1968, 947 -
17b
Komin AP.Carmack M. J. Heterocycl. Chem. 1976, 13: 13 -
17c
Ried W.Tsiotis G. Liebigs Ann. Chem. 1988, 1197 -
17d
Jaung J.-Y.Fukunishi K.Matsuoka M. J. Heterocycl. Chem. 1997, 34: 653 -
17e
Kaupp G.Naimi-Jamal MR. Eur. J. Org. Chem. 2002, 1368 - 18
Nishida J.Naraso SM.Fujiwara E.Tada H.Tomura M.Yamashita Y. Org. Lett. 2004, 6: 2007 - 19
Käpplinger C.Beckert R.Koci J.Braunerova G.Waisser K.Görls H. Heterocycles 2003, 60: 2457 - 21
Otwinowski Z.Minor W. Processing of X-Ray Diffraction Data Collected in Oscillation Mode, In Methods in Enzymology Part A, Vol. 276:Carter CW.Sweet RM. Macromolecular Crystallography, Academic Press; New York: 1997. p.307-326 - 22
Sheldrick GM. Acta Crystallogr., Sect. A 1990, 46: 467 - 23
Sheldrick GM. SHELXL-97 (Release 97-2) University of Göttingen; Germany: 1997.
References
Crystal Data for 2a.
C34H20F12N8·2C4H8O Mr = 912.79 g mol-1, yellow prism, size 0.09 × 0.07 × 0.05 mm3, monoclinic, space group C2/c, a = 13.7887 (3), b = 25.0836 (6), c = 12.0504 (3) Å, β = 104.372 (1)°, V = 4037.44 (16) Å3, T = -90 °C, Z = 4, ρcalcd = 1.502 g cm-3, µ (MoKα) = 1.33 cm-1, F(000) = 1872, 8327 reflections in h (-17/17), k (-29/32), l (-15/15), measured in the range 2.17°≤Θ≤27.48°, completeness Θmax = 99.6%, 4627 independent reflections, R
int = 0.028, 3249 reflections with F
o>4σ(F
o), 383 parameters, 0 restraints, R1obs = 0.047, wR2obs = 0.115, R1all = 0.076, wR2all = 0.131, GOOF = 1.020, largest difference peak and hole: 0.353/-0.282 e Å-3.
CCDC 252357 (FO1730) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk].
Typical Procedure for Rearranging the Tetraaza-fulvalenes.
A mixture of 1 (0.5 mmol) and 300 mg Montmorillonite in 20 mL of DMF was heated to 130 °C for 24 h. After addition of H2O, the precipitate was filtered off and the crude product was purified by column chromatography (alumina, toluene-acetone 29:1). Compound 2a (134 mg, 35%). 1H NMR (250 MHz, THF): δ = 8.58 (s, 4 H, NH), 8.28 (m, 8 H), 7.55 (t, J = 7.5 Hz, 4 H), 7.32 (d, J = 7.5 Hz, 4 H). 13C NMR (62 MHz, THF): δ = 142.0, 140.6, 134.8, 131.3, 131.3, 130.2, 127.0, 122.7, 118.4, 116.1. UV/Vis (THF): λmax (lgε) = 329 (4.4), 440 (4.3), 467 (4.3) nm. MS (FAB in dmba): m/z = 768 (M+), 426, 400, 210.
COLLECT, Data Collection Software; Nonius B.V., Netherlands, 1998.