Synlett, Table of Contents Synlett 2005(7): 1195-1196 DOI: 10.1055/s-2005-865206 SPOTLIGHT© Georg Thieme Verlag Stuttgart · New YorkMolybdenum Hexacarbonyl [Mo(CO)6]Marco Marradi*Dipartimento di Chimica Organica ”Ugo Schiff”, Università degli Studi di Firenze, Polo Scientifico, via della Lastruccia 13, I-50019 Sesto Fiorentino (FI), Italye-Mail: marco.marradi@unifi.it; Recommend Article Abstract Full Text PDF Download All articles of this category Biographical Sketches Marco Marradi took his Degree in Chemistry in 2001 at the University of Florence, where he is currently working on his PhD thesis under the supervision of Prof. A. Goti. His research focuses on the synthesis of chiral nitrones from sugars and their transformation into biologically interesting molecules. Introduction Introduction<P>Molybdenum hexacarbonyl [Mo(CO)6] is a stable crystalline solid with an octahedral geometry (Figure 1). It is generally prepared by reductive carbonylation of molybdenum halides, or is obtained from commercial sources. Mo(CO)6 finds use as catalyst or reagent in several processes, by itself or tuning its reactivity by ligand exchange. [1] Replacement of the carbonyl ligands by both p and s donors affords a large number of different molybdenum complexes which have found use in organic synthesis. The use of chiral ligands allows high levels of regio- and enantioselectivity to be attained. [2] </P> Figure 1 Abstracts Abstracts <TD VALIGN="TOP"> (A) The use of a thermostable catalytic system in combination with Mo(CO)6 allowed the synthesis of benzofuranones starting from bromobenzyl alcohols. [3a] Indanones were obtained under similar conditions using ortho-bromo(chloro)styrenes. [3b] A variant was performed by using polymer-supported amines for the synthesis of amides from aryl halides. [3c] A convenient synthesis of a-methylene-g-butyrolactones from allenyl carbonyls was performed by a DMSO-promoted carbonylation. [3d] These reactions enlighten the role of Mo(CO)6 as a source of CO. </TD><TD VALIGN="TOP"> </TD> <TD VALIGN="TOP"> (B) ‘Instant’ catalysts formed from Mo(CO)6 and phenols have been developed for alkyne metathesis. [4a] [b] Pre-heating activation of catalytic systems consisting of Mo(CO)6 and 4-chlorophenol has increased the yields of productive enyne metathesis.4c,d This procedure was used to dimerize ortho-alkoxypropynylbenzenes and to afford ring-closing alkyne metathesis (RCAM) products from dipropynyls. The use of 2-fluorophenol in place of 4-chlorophenol led to a more reactive and friendly catalyst, which has been employed not only in RCAM, but also in alkyne homodimerizations (HD) and cross metatheses (CM). [4e] [f] </TD><TD VALIGN="TOP"> </TD> <TD VALIGN="TOP"> (C) Mo(CO)6 was reported to effect Pauson-Khand reactions of enynes to afford cyclopentenones. [5a] [b] Chiral alkynyl allenes afforded enantioenriched a-alkylidene cyclopentenones. [5c] [d] Under the same conditions, functionalized difluoroallenes underwent intramolecular [2+2] cycloaddition to afford gem-difluoro bicyclo [4.2.0] systems, instead of the expected Pauson-Khand products. [5e] A tandem Pauson-Khand reaction of bisyne-bisallenes to [5.5.5.5] tetracycles has been reported by Cook, who used a saturated solution of Mo(CO)6. [5f] </TD><TD VALIGN="TOP"> </TD> <TD VALIGN="TOP"> (D) Mo(CO)6 has catalyzed the cycloisomerization of 1-alkyn-4-ols to 2,3-dihydrofurans and the isomerization of epoxyalkynes to furans. [6a] Cyclizations of allylphenylethers with skeletal rearrangement to benzopyrans have also been performed. [6b] [c] Friedel-Crafts alkylations have been reported, too. [6d] </TD><TD VALIGN="TOP"> </TD> <TD VALIGN="TOP"> (E) Mo(CO)6 has been used to reduce the N-O bonds of isoxazoles, [7a] [b] isoxazolines, [7c-e] isoxazolidines7f and 1,2-oxazines. [7g] [h] Variants employed sub-stoichiometric amounts of Mo(CO)6 in the presence of NaBH4, [7h] or a decomplexing work-up on silica gel. [7j] The selective reduction of azides, [7k] nitro compounds [7k] and hydroxylamines [7i] to amines and deoxygenation of epoxides [7l] have also been accomplished. </TD><TD VALIGN="TOP"> </TD> <TD VALIGN="TOP"> (F) Mo(CO)6 behaved as a catalyst for the mild oxidation of 2,5-dialkylfurans to E or Z (depending on the use of a base) enediones using cumyl hydroperoxide (CHP). [8a] Diones gave peroxipyranones in moderate yields, irrespective of the C=C bond configuration, when t-butylhydroperoxide (TBHP) was used. [8a] [b] This indicates that Mo(CO)6 can be employed not only in reduction processes, but also in oxidations. </TD><TD VALIGN="TOP"> </TD> References References For Fischer carbene molybdenum complexes, see: <A NAME="RV12305ST-1A">1a</A> Harvey DF. Brown MF. Tetrahedron Lett. 1990, 31: 2529 <A NAME="RV12305ST-1B">1b</A> Harvey DF. Sigano DM. Chem. Rev. 1996, 96: 271 <A NAME="RV12305ST-1C">1c</A> Bertolini TM. Nguyen QH. Harvey DF. J. Org. Chem. 2002, 67: 8675 For arene complexes, see: <A NAME="RV12305ST-1D">1d</A> Barluenga J. Fañanás FJ. Tetrahedron 2000, 56: 4597 For the synthesis of different carbonyl complexes, see: <A NAME="RV12305ST-1E">1e</A> Kündig PE. Fabritius C.-H. Grossheimann G. Romanens P. Butenschön H. Wey HG. Organometallics 2004, 23: 3741 and references therein For imine aziridination, see: <A NAME="RV12305ST-1F">1f</A> Ardon M. Hogarth G. Oscroft DTW. J. Organomet. Chem. 2004, 689: 2429 and references therein For the use of acetonitrile complexes, see: <A NAME="RV12305ST-1G">1g</A> Morales D. Pérez J. Riera L. Riera V. Corzo-Suarez R. García-Granda S. Miguel D. Organometallics 2002, 21: 1540 <A NAME="RV12305ST-1H">1h</A> Shvo Y. Green R. J. Organomet. Chem. 2003, 675: 77 For meaningful examples in asymmetric alkylations, see: <A NAME="RV12305ST-2A">2a</A> Trost BM. Hachiya I. J. Am. Chem. Soc. 1998, 120: 1104 <A NAME="RV12305ST-2B">2b</A> Trost BM. Hildbrand S. Dogra K. J. Am. Chem. Soc. 1999, 121: 10416 <A NAME="RV12305ST-2C">2c</A> Glorius F. Neuburger M. Pfaltz A. Helv. Chim. Acta 2001, 84: 3178 <A NAME="RV12305ST-3A">3a</A> Wu X. Mahalingam AK. Wan Y. Alterman M. Tetrahedron Lett. 2004, 45: 4635 <A NAME="RV12305ST-3B">3b</A> Wu X. Nilsson P. Larhed M. J. Org. Chem. 2005, 70: 346 <A NAME="RV12305ST-3C">3c</A> Yamazaki K. Kondo Y. J. Comb. Chem. 2004, 6: 121 <A NAME="RV12305ST-3D">3d</A> Yu C.-M. Hong Y.-T. Lee J.-H. J. Org. Chem. 2004, 69: 8506 <A NAME="RV12305ST-4A">4a</A> Mortreux A. Blanchard M. J. Chem. Soc., Chem. Commun. 1974, 4: 786 <A NAME="RV12305ST-4B">4b</A> Kaneta N. Hirai T. Mori M. Chem. Lett. 1995, 6: 1055 For silanol co-catalysts see: <A NAME="RV12305ST-4C">4c</A> Brizius G. Bunz UHF. Org. Lett. 2002, 4: 2829 <A NAME="RV12305ST-4D">4d</A> Villemin D. Héroux M. Blot V. Tetrahedron Lett. 2001, 42: 3701 <A NAME="RV12305ST-4E">4e</A> Grela K. Ignatowska J. Org. Lett. 2002, 4: 3747 <A NAME="RV12305ST-4F">4f</A> Sashuk V. Ignatowska J. Grela K. J. Org. Chem. 2002, 4: 7748 <A NAME="RV12305ST-5A">5a</A> Jeong N. Lee SJ. Lee BY. Chung Y. Tetrahedron Lett. 1993, 34: 4027 <A NAME="RV12305ST-5B">5b</A> Adrio J. Rodríguez Rivero M. Carretero JC. Org. Lett. 2005, 7: 431 <A NAME="RV12305ST-5C">5c</A> Brummond KM. Kerekes AD. Wan H. J. Org. Chem. 2002, 67: 5156 <A NAME="RV12305ST-5D">5d</A> Brummond KM. Mitasev B. Org. Lett. 2004, 6: 2245 <A NAME="RV12305ST-5E">5e</A> Shen Q. Hammond GB. J. Am. Chem. Soc. 2002, 124: 6534 <A NAME="RV12305ST-5F">5f</A> Cao H. Van Ornum SG. Deschamps J. Flippen-Anderson J. Laib F. Cook JM. J. Am. Chem. Soc. 2005, 127: 933 <A NAME="RV12305ST-6A">6a</A> McDonald FE. Schultz CC. J. Am. Chem. Soc. 1994, 116: 9363 <A NAME="RV12305ST-6B">6b</A> Bernard AM. Cocco MT. Omnis V. Piras PP. Synthesis 1997, 41 <A NAME="RV12305ST-6C">6c</A> Bernard AM. Cocco MT. Omnis V. Piras PP. Synthesis 1998, 256 <A NAME="RV12305ST-6D">6d</A> Shimizu I. Khien KM. Nagatomo M. Nakajima T. Yamamoto A. Chem. Lett. 1997, 851 <A NAME="RV12305ST-7A">7a</A> Nitta M. Kobayashi T. J. Chem. Soc., Perkin Trans. 1 1985, 1401 <A NAME="RV12305ST-7B">7b</A> Donati D. Ferrini S. Fusi S. Ponticelli F. J. Heterocycl. Chem. 2004, 41: 761 <A NAME="RV12305ST-7C">7c</A> Baraldi PG. Barco A. Benetti S. Manfredini S. Simoni D. Synthesis 1987, 276 <A NAME="RV12305ST-7D">7d</A> Trost BM. Li L. Guile SD. J. Am. Chem. Soc. 1992, 114: 8745 <A NAME="RV12305ST-7E">7e</A> Tranmer GK. Tam W. Org. Lett. 2002, 4: 4101 <A NAME="RV12305ST-7F">7f</A> Cicchi S. Goti A. Brandi A. Guarna A. De Sarlo F. Tetrahedron Lett. 1990, 31: 3351 <A NAME="RV12305ST-7G">7g</A> Zimmer R. Reissig HU. J. Org. Chem. 1992, 57: 339 <A NAME="RV12305ST-7H">7h</A> Li F. Brogan JB. Gage JL. Zhang D. Miller MJ. J. Org. Chem. 2004, 69: 4538 <A NAME="RV12305ST-7J">7j</A> Guarna A. Guidi A. Goti A. Brandi A. De Sarlo F. Synthesis 1989, 175 <A NAME="RV12305ST-7K">7k</A> Iyer S. Kulkarni GM. Synth. Commun. 2004, 34: 721 <A NAME="RV12305ST-7I">7i</A> Moody CJ. Chem. Commun. 2004, 1341 <A NAME="RV12305ST-7L">7l</A> Patra A. Bandyopadhyay M. Mal D. Tetrahedron Lett. 2003, 44: 2355 <A NAME="RV12305ST-8A">8a</A> Massa A. Acocella MR. De Rosa M. Soriente A. Villano R. Scettri A. Tetrahedron Lett. 2003, 44: 835 For other oxidations with 1/t-BuOOH, see: <A NAME="RV12305ST-8B">8b</A> Haas GR. Kolis JW. Organometallics 1998, 17: 4454 Figures All articles of this category Figure 1