Int J Sports Med 2006; 27(4): 322-329
DOI: 10.1055/s-2005-865658
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Arm to Leg Coordination in Elite Butterfly Swimmers

D. Chollet1 , L. Seifert1 , L. Boulesteix1 , M. Carter1
  • 1C.E.T.A.P.S. Laboratory UPRES EA 3832: University of Rouen, Faculty of Sports Sciences, France
Further Information

Publication History

Accepted after revision: March 15, 2005

Publication Date:
11 July 2005 (online)

Abstract

This study proposed the use of four time gaps to assess arm-to-leg coordination in the butterfly stroke at increasing race paces. Fourteen elite male swimmers swam at four velocities corresponding to the appropriate paces for, respectively, the 400-m, 200-m, 100-m, and 50-m events. The different stroke phases of the arm and leg were identified by video analysis and then used to calculate four time gaps (T1: time gap between entry of the hands in the water and the high break-even point of the first undulation; T2: time gap between the beginning of the hands' backward movement and the low break-even point of the first undulation; T3: time gap between the hands' arrival in a vertical plane to the shoulders and the high break-even point of the second undulation; T4: time gap between the hands' release from the water and the low break-even point of the second undulation), the values of which described the changing relationship of arm to leg movements over an entire stroke cycle. With increases in pace, elite swimmers increased the stroke rate, the relative duration of the arm pull, the recovery and the first downward movement of the legs, and decreased the stroke length, the relative duration of the arm catch phase and the body glide with arms forward (measured by T2), until continuity in the propulsive actions was achieved. Whatever the paces, the T1, T3, and T4 values were close to zero and revealed a high degree of synchronisation at key motor points of the arm and leg actions. This new method to assess butterfly coordination could facilitate learning and coaching by situating the place of the leg undulation in relation with the arm stroke.

References

  • 1 Barthels K M, Adrian M J. Three-dimensional spatial hand patterns of skilled butterfly swimmers. Clarys JP, Lewillie L Swimming II. Baltimore; University Park Press 1975: 154-160
  • 2 Boulesteix L, Seifert L, Chollet D. The ratio between coordination and butterfly propulsion index for expert swimmers. Chatard JC Biomechanics and Medicine in Swimming IX. Saint Etienne; University of Saint Etienne 2003: 99-104
  • 3 Chengalur S N, Brown P L. An analysis of male and female Olympic swimmers in the 200 meter events.  Can J Sports Sci. 1992;  17 104-109
  • 4 Chollet D, Chalies S, Chatard J C. A new index of coordination for the crawl: description and usefulness.  Int J Sports Med. 2000;  21 54-59
  • 5 Chollet D, Seifert L, Leblanc H, Boulesteix L, Carter M. Evaluation of the arm-leg coordination in flat breaststroke.  Int J Sports Med. 2004;  25 486-495
  • 6 Costill D L, Maglischo E W, Richardson A B. Swimming. Oxford; Blackwell Scientific Publications 1992
  • 7 Diedrich F J, Warren W H. Why change gaits? Dynamics of the walk-run transition.  J Exp Psych: Hum Percept Perf. 1995;  21 183-202
  • 8 Hahn A, Krug T. Application of knowledge gained from the coordination of partial movements in breaststroke and butterfly swimming for the development of technical training. MacLaren D, Reilly T, Less A Swimming Science VI. London, England; E & FN SPON 1992: 167-171
  • 9 Hay J G. Cycle rate, length, and speed of progression in human locomotion.  J Appl Biomech. 2002;  18 257-270
  • 10 Jensen R K, McIlwain J. Modeling of lower extremity forces in the dolphin kick. Terauds J, Bedingfield EW Swimming Science III. Baltimore; University Park Press 1979: 137-147
  • 11 Kelso J AS. Dynamic Patterns: The Self-Organization of Brain and Behavior. Cambridge; MIT Press 1995
  • 12 Kennedy P, Brown P, Chengalur S N, Nelson R C. Analysis of male and female Olympic swimmers in the 100 m events.  Int J Sport Biomech. 1990;  6 187-197
  • 13 Kolmogorov S V, Duplischeva O A. Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity.  J Biomech. 1992;  25 311-318
  • 14 Kolmogorov S V, Rumyantseva O A, Gordon B J, Cappaert J M. Hydrodynamic characteristics of competitive swimmers of different genders and performance levels.  J Appl Biomech. 1997;  13 88-97
  • 15 Maglischo E W. Swimming Fastest. Champaign, Illinois; Human Kinetics 2003
  • 16 Mason B R, Tong Z, Richards R J. Propulsion in the butterfly stroke. MacLaren D, Reilly T, Less A Swimming Science VI. London, England; E & FN SPON 1992: 81-86
  • 17 Pai Y C, Hay J G, Wilson B D. Stroking techniques of elite swimmers.  J Sports Sci. 1984;  2 225-239
  • 18 Sanders R H, Cappaert J M, Devlin R K. Wave characteristics of butterfly swimming.  J Biomech. 1995;  28 9-16
  • 19 Schleihauf R E, Higgins J R, Hinricks R, Luedtke D, Maglischo C, Maglischo E W, Thayer A. Propulsive techniques: front crawl stroke, butterfly, backstroke and breaststroke. Ungerechts BE, Wilke K, Reischle K Swimming Science V. Champaign, Illinois; Human Kinetics Publishers 1988: 53-59
  • 20 Seifert L, Chollet D. A new index of flat breaststroke propulsion: comparison between elite men and elite women.  J Sports Sci. 2005;  23 309-320
  • 21 Seifert L, Chollet D, Bardy B. Effect of swimming velocity on arm coordination in front crawl: a dynamical analysis.  J Sports Sci. 2004;  22 651-660

Didier Chollet
Ludovic Seifert

University of Rouen
Faculty of Sports Sciences
CETAPS Laboratory

Bld Siegfried

76821 Mont Saint Aignan Cedex

France

Phone: + 33232107793

Fax: + 33 2 32 10 77 93

Email: didier.chollet@univ-rouen.fr

Email: ludovic.seifert@univ-rouen.fr