Abstract
N -(2-Benzyloxycarbonyl)phenyl ketenimines undergo a thermally induced cyclization to give 2-substituted 4H -3,1-benzoxazin-4-ones. These processes involve the formation of a new carbon-oxygen bond and the migration of the benzyl group from the oxygen atom of the benzyloxy unit at the ester function to the terminal carbon atom of the ketenimine fragment.
Key words
azides - ketenimines - cyclizations - rearrangements - benzoxazinones
References
1
Mayama S.
Tani T.
Tetrahedron Lett.
1981,
22:
2103
2a
Bouillant M.-L.
Favre-Bonvin J.
Ricci P.
Tetrahedron Lett.
1983,
24:
51
2b
Ponchet M.
Martín-Tanguy J.
Marais A.
Poupet A.
Phytochemistry
1984,
23:
1901
3
Niemann GJ.
Liem J.
van der Kerk-van Hoof A.
Niessen WMA.
Phytochemistry
1992,
31:
3761
4
Teshima T.
Griffin JC.
Powers JC.
J. Biol. Chem.
1982,
257:
5085
5a
Alazard R.
Béchet J.-J.
Dupaix A.
Yon J.
Biochim. Biophys. Acta
1973,
309:
379
5b
Hedstrom L.
Moorman AR.
Dobbs J.
Abeles RH.
Biochemistry
1984,
23:
1753
6a
Stein RL.
Strimpler AM.
Viscarello BR.
Wildonger RA.
Mauger RC.
Trainor DA.
Biochemistry
1987,
26:
4126
6b
Krantz A.
Spencer RW.
Tam TF.
Liak TJ.
Copp LJ.
Thomas EM.
J. Med. Chem.
1990,
33:
464
7
Jarvest RL.
Parratt MJ.
Debouck CM.
Gorniak JG.
Jennings LJ.
Serafinowska HT.
Strickler JE.
Bioorg. Med. Chem. Lett.
1996,
6:
2463
8
Gilmore JL.
Hays SJ.
Caprathe BW.
Lee C.
Emmerling MR.
Michael W.
Jaén JC.
Bioorg. Med. Chem. Lett.
1996,
6:
679
9
Fenton G.
Newton CG.
Wyman BM.
Bagge P.
Dron DI.
Riddell D.
Jones GD.
J. Med. Chem.
1989,
32:
265
10a
Clémence F.
Martret OL.
Collard J.
J. Heterocycl. Chem.
1984,
21:
1345
10b
Ibrahim SS.
Abdel-Halim AM.
Gabr Y.
El-Edfawy S.
Abdel-Rahman RM.
J. Chem. Res., Synop.
1997,
154
11a For a review on the synthesis and reactivity of 4H -3,1-benzoxazin-4-ones bearing a carbon substituent at the 2 position see: Coppola GM.
J. Heterocycl. Chem.
1999,
36:
563
11b For a review on the synthesis and reactivity of 4H -3,1-benzoxazin-4-ones bearing oxy, mercapto or amino functionalities at the 2-position see: Coppola GM.
J. Heterocycl. Chem.
2000,
37:
1369
For examples of preparations of 2-substituted 4H -3,1-benzoxazin-4-ones from anthranilic acids, see:
12a
Bain DI.
Smalley RK.
J. Chem. Soc. C
1968,
1593
12b
Bergman J.
Bergman S.
J. Org. Chem.
1985,
50:
1246
12c
Hauteville M.
Ponchet M.
Ricci P.
Favre-Bonvin J.
J. Heterocycl. Chem
1988,
25:
715
12d
Parkanyi C.
Yuan HL.
Stromberg BHE.
Evenzahav A.
J. Heterocycl. Chem.
1992,
29:
749
12e
Atkinson RS.
Coogan MP.
Cornell CL.
J. Chem. Soc., Perkin Trans. 1
1995,
157
12f
Khajavi MS.
Montazari N.
Hosseini SSS.
J. Chem. Res., Synop.
1997,
286
For examples of preparations of 2-substituted 4H -3,1-benzoxazin-4-ones from N -acylanthranilic acids see:
13a
Zentmyer DT.
Wagner EC.
J. Org. Chem.
1948,
13:
967
13b
Rabilloud G.
Sillion B.
J. Heterocycl. Chem.
1980,
17:
1065
13c
Conley RA.
Barton DL.
Stefanick SM.
Lam MM.
Lindabery GC.
Kasulanis CF.
Cesco-Cancian S.
Currey S.
Fabian AC.
Levine SD.
J. Heterocycl. Chem.
1995,
32:
761
13d
Marsham PR.
Jackman AL.
Barker AJ.
Boyle FT.
Pegg SJ.
Wardleworth JM.
Kimbell R.
O’Connor BM.
Calvert AH.
Hughes LR.
J. Med. Chem.
1995,
38:
994
13e
Mohapatra DK.
Datta A.
Synlett
1996,
1129
For examples of preparations of 2-substituted 4H -3,1-benzoxazin-4-ones from isatoic anhydride see:
14a
Minami T.
Ogata M.
Hirao I.
Tanaka M.
Agawa T.
Synthesis
1982,
231
14b
Tsubota M.
Hamashima M.
Heterocycles
1984,
21:
706
15
Larock RC.
Fellows CA.
J. Org. Chem.
1980,
45:
363
16
Cacchi S.
Fabrizi G.
Marinelli F.
Synlett
1996,
997
17
Larksarp C.
Alper H.
Org. Lett.
1999,
1:
1619
18a
Richman RJ.
Hassner A.
J. Org. Chem.
1968,
33:
2548
18b
Bristow THC.
Foster HE.
Hooper M.
J. Chem. Soc., Chem. Commun.
1974,
677
18c
Adam J.-M.
Winkler T.
Helv. Chim. Acta
1984,
67:
2186
19a
Smalley RK.
Suschitzky H.
Tanner EM.
Tetrahedron Lett.
1966,
29:
3465
19b
Crabtree HE.
Smalley RK.
Suschitzky H.
J. Chem. Soc. C
1968,
2730
19c
Archer JG.
Barker AJ.
Smalley RK.
J. Chem. Soc., Perkin Trans. 1
1973,
1169
20
Reddy GS.
Reddy KK.
Indian J. Chem., Sect. B
1978,
16:
1109
21
Molina P.
Conesa C.
Velasco MD.
Tetrahedron Lett.
1993,
34:
175
22a
Alajarín M.
Vidal A.
Tovar F.
Targets Heterocycl. Syst.
2000,
4:
293
22b
Barker MW.
McHenry WE. In
The Chemistry of Ketenes, Allenes, and Related Compounds
part 2:
Patai S.
Wiley Interscience;
Chichester:
1980.
p.701
22c
Dondoni A.
Heterocycles
1980,
14:
1547
23a
Molina P.
Vidal A.
Barquero I.
Synthesis
1996,
1199
23b
Molina P.
Vidal A.
Tovar F.
Synthesis
1997,
963 ; and references cited therein
24a
Alajarín M.
Molina P.
Vidal A.
Tetrahedron Lett.
1996,
37:
8945
24b
Alajarín M.
Vidal A.
Tovar F.
Arrieta A.
Lecea B.
Cossío FP.
Chem. Eur. J.
1999,
5:
1106
24c
Alajarín M.
Vidal A.
Tovar F.
Ramírez de Arellano MC.
Tetrahedron: Asymmetry
2004,
15:
489 ; and references cited therein
25
Alajarín M.
Vidal A.
Ortín M.-M.
Tovar F.
Synthesis
2002,
2393
26
Alajarín M.
Vidal A.
Tovar F.
Conesa C.
Tetrahedron Lett.
1999,
40:
6127
27
Alajarín M.
Vidal A.
Tovar F.
Tetrahedron Lett.
2000,
41:
7029
28a
Alajarín M.
Vidal A.
Ortín M.-M.
Org. Biomol. Chem.
2003,
1:
4282
28b
Alajarín M.
Vidal A.
Ortín M.-M.
Bautista D.
New J. Chem.
2004,
28:
570
28c
Alajarín M.
Vidal A.
Ortín M.-M.
Bautista D.
Synlett
2004,
991
29 Ketenimines 5 and 7 remained unaltered when heated in boiling toluene or boiling ortho -xylene.
30 In the thermal treatment of the N -(2-benzyloxycarbo-nyl)phenyl ketenimines 5 small amounts of the corres-ponding 4H -3,1-benzoxazin-4-ones 9 (Figure
[3 ]
) were always formed (8-13%). Probably, compounds 9 resulted from the hydrolysis of the ketenimine function in the N -(2-benzyloxycarbonyl)phenyl ketenimines 5 to yield the corresponding amides, followed by intramolecular nucleophilic displacement of the benzyloxy group from the ester group by the carbonyl oxygen of the amide function. We tried very hard to exclude water from the reaction mixtures, but probably we did not succeed as the results were invariable, and small amounts of benzoxazinones 9 were always formed. Compounds 9a (R1 = H) and 9b (R1 = Cl) could not be separated from the 4H -3,1-benzoxazin-4-ones 6c [R1 = H; R2 = Ph; Ar = 4-MeOC6 H4 ] and 6f [R1 = Cl; R2 = Ph; Ar = 4-MeOC6 H3 ], respectively.
31 CCDC 264507 contains the supplementary crystallographic data for 6g . The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; e-mail:deposit@ccdc.cam.ac.uk).
32a
Pinhey JT.
Schaffner K.
Aust. J. Chem.
1968,
21:
2265
32b
Arnold RT.
Kulenovic ST.
J. Org. Chem.
1980,
45:
891
32c
Reinaud O.
Capdevielle P.
Maumy M.
Tetrahedron
1987,
43:
4167
32d
Andreichikov YS.
Gein VL.
Ivanenko OI.
Brigadnova EV.
Maslivets AN.
J. Org. Chem. USSR (Engl. Transl.)
1988,
24:
1007
32e
Burger K.
Gaa K.
Geith K.
Schierlinger C.
Synthesis
1989,
850
32f
West FG.
Naidu BN.
Tester RW.
J. Org. Chem.
1994,
59:
6892
32g
Desai VN.
Saha NN.
Dhavale DD.
J. Chem. Soc., Perkin Trans. 1
2000,
147
32h
Burger K.
Fuchs A.
Hennig L.
Helmreich B.
Greif D.
Monatsh. Chem.
2001,
132:
929
32i
Karche NP.
Jachak SM.
Dhavale DD.
J. Org. Chem.
2001,
66:
6323
33 2-Azidobenzoyl chloride (1a ) and 2-azido-5-chlorobenzoyl chloride (1b ) were both prepared following the experimental procedure described for 1a : Porter TC.
Smalley RK.
Teguiche M.
Purwono B.
Synthesis
1997,
773
34
Taylor EC.
McKillop A.
Hawks GH.
Org. Synth.
1973,
52:
36
35
Pracejus H.
Wallura G.
J. Prakt. Chem.
1962,
19:
33