References
1a
Jepsen JS.
Sorensen MD.
Wengel J.
Oligonucleotides
2004,
14:
130
1b
Petersen M.
Wengel J.
Trends Biotechnol.
2003,
21:
74
1c
Imanishi T.
Obika S.
Chem. Commun.
2002,
1653
1d
Leumann CJ.
Bioorg. Med. Chem.
2002,
10:
841
2
Thibaudeau C.
Chattopadhyaya J.
Stereoelectronic Effects in Nucleosides and Nucleotides and their Structural Implications
Uppsala University Press;
Sweden:
1999. jyoti@boc.uu.se; ISBN 91-506-1351-0
3a
Pradeepkumar PI.
Zamaratski E.
Földesi A.
Chattopadhyaya J.
J. Chem. Soc., Perkin Trans. 2
2001,
402
3b
Pradeepkumar PI.
Amirkhanov NV.
Chattopadhyaya J.
Org. Biomol. Chem.
2003,
1:
81
3c
Pradeepkumar PI.
Cheruku P.
Plashkevych O.
Acharya P.
Gohil S.
Chattopadhyaya J.
J. Am. Chem. Soc.
2004,
126:
11484
4
Roivainen J.
Vepsäläinen J.
Azhayev A.
Mikhailopulo IA.
Tetrahedron Lett.
2002,
43:
6553
5 Note that the structure of compound 16 in ref. 4 was erroneously described to 1-(1,3-anhydro-β-d-psicofura-nosyl)thymine. Single-crystal X-ray analysis showed that compound 16 actually is methyl 1-deoxy-1-(N
1-thyminyl)-β-d-psicofuranoside: (Roivainen, J.; Reuter, H.; Mikhailopulo, I. A., unpublished). The structures of the anhydro nucleosides 9, 12, and 13 have been proved by X-ray analyses (Roivainen, J. A.; Reuter, H.; Mikhailopulo, I. A., unpublished).
6a
Hrebabecky H.
Farkas J.
Sorm F.
Coll. Czech. Chem. Commun.
1972,
37:
2059
6b
Hrebabecky H.
Farkas J.
Sorm F.
Coll. Czech. Chem. Commun.
1974,
39:
1098
7
Elliott RD.
Niwas S.
Riordan JM.
Montgomery JA.
Secrist JA.
Nucleosides Nucleotides
1992,
11:
97
8
Sarma MSP.
Megati S.
Klein RS.
Otter BA.
Nucleosides Nucleotides
1995,
14:
393
9a
Sanchez RA.
Orgel LE.
J. Mol. Biol.
1970,
47:
531
9b
Shannahoff DH.
Sanchez RA.
J. Org. Chem.
1973,
38:
593
10
Holy A.
Nucleic Acids Res.
1974,
1:
289
11
Codington JF.
Doerr IL.
Fox JJ.
J. Org. Chem.
1964,
29:
564 ; and references therein.
12
Miah A.
Reese CB.
Song Q.
Sturdy Z.
Neidle S.
Simpson IJ.
Read M.
Rayner E.
J. Chem. Soc., Perkin Trans. 1
1998,
3277
13 The 1H NMR and 13C MNR data for the psicoside 3 are in agreement with those previously published.
[3b]
14
Divakar KJ.
Reese CB.
J. Chem. Soc., Perkin Trans. 1
1982,
1171
15 1-(1,3-Anhydro-β-d-psicofuranosyl)uracil (2): amorphous powder; UV (MeOH): λmax = 257 nm (ε 9500), λmin = 227 (ε 2700) nm. 1H NMR (500.13 MHz, DMSO-d
6): δTMS = 7.44 (d, 1 H, J
5,6 = 7.99 Hz, H6), 5.63 (d, 1 H, H5), 5.25 (d, 1 H, J
3
′
,4
′ = 3.91 Hz, H3′), 5.21 (br s, 1 H, 4′-OH), 5.00 (d, 1 H, J
1
′
,1
′′ = 8.13 Hz, H1′), 4.82 (br t, 1 H, J = 4.10 Hz, 6′-OH), 4.57 (d, 1 H, H1′′), 4.07 (ddd, 1 H, J
4
′
,5
′ = 8.59 Hz, J
5
′
,6
′ = 2.0 Hz, J
5
′
,6
′′ = 5.68 Hz, H5′), 4.03 (br m, 1 H, H4′), 3.75 (br d, 1 H, J
6
′
,6
′′ = 12.9 Hz, H6′), 3.50 (br m, 1 H, H6′′) ppm. 13C NMR (125.77 MHz, DMSO-d
6): δTMS = 163.22 (C4), 149.24 (C2), 141.60 (C6), 101.96 (C5), 90.85 (C2′), 86.84 (C3′), 83.30 (C5′), 77.83 (C1′), 69.65 (C4′), 60.57 (C6′) ppm. Anal. Calcd for C10H12N2O6: C, 46.88; H, 4.72; N, 10.93. Found: C, 46.77; H, 4.63; N, 10.90.
16 1-(1,3-Anhydro-β-d-sorbofuranosyl)uracil (4): amorphous powder; UV (MeOH): λmax = 256 nm (ε 9900), λmin = 227 nm (ε 2800). 1H NMR (500.13 MHz, (DMSO-d
6): δTMS = 11.39 (br s, 1 H, N
3H), 7.40 (d, 1 H, J
5,6 = 8.05 Hz, H6), 5.73 (d, 1 H, H5), 5.60 (d, 1 H, J = 4.42 Hz, 4′-OH), 5.17 (s, 1 H, J
3
′
,4
′ < 0.5 Hz, H3′), 5.04 (d, 1 H, J
1
′
,1
′′ = 8.28 Hz, H1′), 4.80 (t, 1 H, J = 5.70 Hz, 6′-OH), 4.57 (d, 1 H, H1′′), 4.42 (m, 1 H, J
4
′
,5
′ = 3.35 Hz, J
5
′
,6
′ = 5.54 Hz, J
5
′
,6
′′ = 5.88 Hz, H5′), 4.10 (br t, 1 H, H4′), 3.74 (ddd, 1 H, J
6
′
,6
′′ = 11.60 Hz, H6′), 3.63 (ddd, 1 H, H6′′) ppm. 13C NMR (125.77 MHz, DMSO-d
6): δTMS = 163.23 (C4), 149.65 (C2), 141.68 (C6), 102.45 (C5), 92.96 (C2′), 91.40 (C3′), 84.92 (C5′), 78.61 (C1′), 70.91 (C4′), 58.79 (C6′). Anal. Calcd for C10H12N2O6: C, 46.88; H, 4.72; N, 10.93. Found: C, 46.75; H, 4.61; N, 10.88.
17 1-[3,4-Anhydro-1,6-di-O-(4-monomethoxy)-trityl-β-d-psicofuranosyl]uracil (10): amorphous powder; UV (MeOH): λmax = 231.5 nm (ε 26900), λmax = 263 nm (ε 9000), λmin = 225 nm (ε 23500), λmin = 255 nm (ε 8800). 1H NMR (500.13 MHz, DMSO-d
6): δTMS = 11.35 (s, 1 H, N
3H), 7.71 (d, 1 H, J
5,6 = 8.14 Hz, H6), 5.47 (d, 1 H, H5), 4.92 (d, 1 H, J
3
′
,4
′ = 2.54 Hz, H3′), 4.56 (t, 1 H, J
5
′
,6
′ = J
5
′
,6
′′ = 4.26 Hz, H5′), 3.92 (d, 1 H, J
4
′
,5
′ < 0.5 Hz, H4′), 3.61 (d, 1 H, J
1
′
,1
′′ = 9.29 Hz, H1′), 3.16 (d, 1 H, H-1′′), 3.19 (d, H6′ and H6′′) ppm. 13C NMR (125.77 MHz, DMSO-d
6): δTMS = 163.14 (C4), 150.47 (C2), 141.64 (C6), 100.63 (C5), 63.21 (C1′), 95.92 (C2′), 57.37 (C3′), 56.12 (C4′), 79.83 (C5′), 62.65 (C6′) ppm. Anal. Calcd for C50H44N2O8: C, 74.98; H, 5.54; N, 3.50. Found: C, 74.83; H, 5.50; N, 3.42.
18
Miles DW.
Robins RK.
Eyring H.
Proc. Natl. Acad. Sci. U.S.A.
1967,
57:
1138
19a
Miles DW.
Robins MJ.
Robins RK.
Winkley MW.
Eyring H.
J. Am. Chem. Soc.
1969,
91:
824
19b
Miles DW.
Robins MJ.
Robins RK.
Winkley MW.
Eyring H.
J. Am. Chem. Soc.
1969,
91:
831
19c
Miles DW.
Inskeep WH.
Robins MJ.
Winkley MW.
Robins RK.
Eyring H.
J. Am. Chem. Soc.
1970,
92:
3872
20
Yoshimura Y.
Ueda T.
Matsuda A.
Tetrahedron Lett.
1991,
32:
4549