Subscribe to RSS
DOI: 10.1055/s-2005-871582
Convenient and Regioselective Synthesis of Nucleoside Phosphoramidate Monoesters
Publication History
Publication Date:
07 July 2005 (online)
Abstract
We have developed a convenient and efficient method for the synthesis of nucleoside phosphoramidate monoesters. This step-wise synthesis, consisting of an ester exchange, reaction of the 5′-OH of nucleosides with fluorenylmethyl aryl phosphite, and an Atherton-Todd reaction, gave fluorenylmethyl nucleoside 5′-phosphoramidates; final removal of the fluorenylmethyl group yielded the desired target products in good yields.
Key words
phosphoramidate - ester-exchange - diphenyl phosphite - nucleoside - Atherton-Todd reaction
-
1a
Cahard D.McGuigan C.Balzarini J. Mini-Rev. Med. Chem. 2004, 4: 371 -
1b
Drontle DP.Wagner CR. Mini-Rev. Med. Chem. 2004, 4: 409 -
1c
De Clercq E. Nat. Rev. Drug Discovery 2002, 1: 13 -
1d
Wagner CR.Iyer VV.McIntee EJ. Med. Res. Rev. 2000, 20: 417 -
1e
Meier C. Synlett 1998, 233 -
1f
Jones RJ.Bischofberger N. Antiviral Res. 1995, 27: 1 -
1g
Li P.Shaw BR. J. Org. Chem. 2005, 70: 2171 -
2a
Jones AS.McGuigan C.Walker RT.Balzarini J.De Clercq E. J. Chem. Soc., Perkin Trans. 1 1984, 1471 -
2b
Molema G.Jansen RW.Meijer DKF. Eur. J. Pharmacol. 1990, 183: 2083 -
2c
Abraham TW.Wagner CR. Nucleosides Nucleotides 1994, 13: 1891 -
2d
McIntee EJ.Remmel RP.Schinazi RF.Abraham TW.Wagner CR. J. Med. Chem. 1997, 40: 3323 -
2e
Wagner CR.Chang SL.Griesgraber GW.Song H.McIntee EJ.Zimmerman CL. Nucleosides, Nucleotides 1999, 18: 913 -
3a
McGuigan C.Cahard D.Sheeka HM.De Clercq E.Balzarini J. J. Med. Chem. 1996, 39: 1748 -
3b
Abraham TW.Kalman TI.McIntee EJ.Wagner CR. J. Med. Chem. 1996, 39: 4569 -
3c
Kim J.Drontle DP.Wagner CR. Nucleosides, Nucleotides Nucleic Acids 2004, 23: 483 -
3d
Kim J.Wagner CR. Antiviral Res. 2003, 57: A53 -
3e
Wagner CR.Kim J.Chou TF. Antiviral Res. 2004, 62: A27 -
3f
Kim J.Chou TF.Griesgraber GW.Wagner CR. Mol. Pharm. 2004, 1: 102 -
4a
Wagner CR.McIntee EJ.Schinazi RF.Abraham TW. Bioorg. Med. Chem. Lett. 1995, 5: 1819 -
4b
Balzarini J.Egberink H.Hartman K.Cahard D.Vahlenkamp T.Thormar H.DeClercq E.McGuigan C. Proc. Mol. Pharmacol. 1996, 50: 1207 -
5a
Yoshikawa M.Kato T.Takenishi T. Bull. Chem. Soc. Jpn. 1969, 42: 3505 -
5b
Yoshikawa M.Kato T.Takenishi T. Tetrahedron Lett. 1967, 50: 5065 -
5c
Hong CI.Nechaev A.West CR. J. Med. Chem. 1979, 22: 1428
References
Spectroscopic data of selected compounds: Fm-U-P-LeuOCH3 ( 6bb). Overall yield from 1 to 6: 82%. 1H NMR (300 MHz, CDCl3): δ = 0.77-0.82 (d, 6 H, CH3, 3 J = 6.00 Hz), 1.26 (m, 2 H, β-CH2), 1.40 (m, 1 H, γ-CH), 3.49-3.62 (m, 4 H, OCH3, α-CH), 3.85 (m, 5′-CH2), 3.99 (Fm-CH), 4.02 (m, 1 H, 4′-CH), 4.14 (t, 1 H, 3′-CH), 4.25 (t, 1 H, 2′-CH), 5.21 (2 H, Fm-CH2), 5.81 (1 H, 1′-CH), 5.62 (d, 1 H, 3-CH), 7.74 (d, 1 H, 2-CH), 7.20-7.55 (8 H, Fm-Ar-). 13C NMR (75 MHz, CDCl3): δ = 21.67 (CH3), 22.73 (CH3), 24.54 (γ-CH), 43.84 (β-CH2), 48.09 (Fm-CH), 52.34 (OCH3), 52.86 (α-CH), 64.80 (5′-CH2), 68.46 (2′-CH), 69.84 (3′-CH), 72.40 (Fm-CH2), 83.10 (4′-CH), 89.81 (1′-CH), 102.70 (3-CH), 120.12, 124.98, 127.26, 127.97, 140.34, 141.42 (Fm-Ar), 143.17 (2-CH), 151.21 (6-C), 163.98 (3-C), 174.68 (CO). 31P NMR (121 MHz, CDCl3): δ = 8.70, 8.50. ESI-MS (Positive): m/z = 630 [M + H]+. U-P-LeuOCH 3 ( 7bb). Total yield from 1 to 7: 73%. 1H NMR (300 MHz, D2O): δ = 0.73-0.75 (d, 6 H, CH3, 3 J = 6.00 Hz), 1.38 (m, 2 H, β-CH2), 1.54 (m, 1 H, γ-CH), 3.60-3.62 (4 H, m, OCH3, α-CH), 3.83-3.94 (m, 5′-CH2), 4.12 (m, 1 H, 4′-CH), 4.18 (t, 1 H, 3′-CH), 4.23 (t, 1 H, 2′-CH), 5.84 (1 H, 1′-CH), 5.83 (d, 1 H, 3-CH), 7.85 (d, 1 H, 2-CH). 13C NMR (75 MHz, CDCl3): δ = 21.45 (CH3), 21.98 (CH3), 24.26 (γ-CH), 43.09 (d, β-CH2, 3 J P-C = 7.16 Hz), 52.61 (OCH3), 53.48 (α-CH), 63.60 (5′-CH2), 69.91 (2′-CH), 73.87 (3′-CH), 83.53 (d, 4′-CH, 3 J P-C = 8.61 Hz), 88.65 (1′-CH), 102.69 (3-CH), 141.86 (2-CH), 151.81 (6-C), 166.19 (3-C), 178.27 (CO). 31P NMR (121 MHz, D2O): δ = 7.01. ESI-MS (Negative): m/z = 450 [M - H]-.