Synlett 2005(12): 1917-1921  
DOI: 10.1055/s-2005-871938
LETTER
© Georg Thieme Verlag Stuttgart · New York

Metal Chloride-Promoted Aldol Reaction of α-Dimethylsilylesters with Aldehydes, Ketones, and α-Enones

Katsukiyo Miura*a,b, Takahiro Nakagawaa,b, Akira Hosomi*a,b
a Department of Chemistry, 21st Century COE, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
b CREST, Japan Science and Technology Corporation (JST), Tsukuba, Ibaraki 305-8571, Japan
Fax: +81(29)8536503; e-Mail: miura@chem.tsukuba.ac.jp; e-Mail: hosomi@chem.tsukuba.ac.jp;
Further Information

Publication History

Received 13 May 2005
Publication Date:
07 July 2005 (online)

Abstract

In the presence of a catalytic amount of LiCl, α-dimethylsilylesters (α-DMS-esters) 1 smoothly reacted with various aldehydes at 30 °C to give aldols in good to high yields. On the other hand, the aldol reaction with ketones was effectively promoted by MgCl2 rather than by LiCl. α-Enones also underwent the metal chloride-promoted addition of 1 at the carbonyl carbon or β-carbon.

    References

  • 1a Modern Aldol Reactions   Vol. 2:  Mahrwald R. Wiley-VCH; Weinheim Germany: 2004. 
  • 1b Miura K. Hosomi A. In Main Group Metals in Organic Synthesis   Vol. 2:  Yamamoto H. Oshima K. Wiley-VCH; Weinheim Germany: 2004.  Chap. 10. p.409 
  • 1c Gennari C. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  Chap. 2.4. p.629 
  • 2a Mukaiyama T. Narasaka K. Banno K. Chem. Lett.  1973,  1011 
  • 2b Mukaiyama T. Banno K. Narasaka K. J. Am. Chem. Soc.  1974,  96:  7503 
  • 3a Noyori R. Yokoyama K. Sakata J. Kuwajima I. Nakamura E. Shimizu M. J. Am. Chem. Soc.  1977,  99:  1265 
  • 3b Nakamura E. Shimizu M. Kuwajima I. Sakata J. Yokoyama K. Noyori R. J. Org. Chem.  1983,  48:  932 
  • 3c Noyori R. Nishida I. Sakata J. J. Am. Chem. Soc.  1983,  105:  1598 
  • 4a Denmark SE. Winter SBD. Su X. Wong K.-T. J. Am. Chem. Soc.  1996,  118:  7404 
  • 4b Denmark SE. Stavenger RA. Acc. Chem. Res.  2000,  33:  432 ; and references cited therein
  • 5a Fujisawa H. Mukaiyama T. Chem. Lett.  2002,  182 
  • 5b Nakagawa T. Fujisawa H. Mukaiyama T. Chem. Lett.  2004,  33:  92 ; and references cited therein
  • 6 Miura K. Nakagawa T. Hosomi A. J. Am. Chem. Soc.  2002,  124:  536 
  • Related works:
  • 7a Miura K. Tamaki K. Nakagawa T. Hosomi A. Angew. Chem. Int. Ed.  2000,  39:  1958 
  • 7b Miura K. Nakagawa T. Hosomi A. Synlett  2003,  2068 
  • 8 Denmark SE. Fan Y. J. Am. Chem. Soc.  2002,  124:  4233 
  • 9 Oisaki K. Suto Y. Kanai M. Shibasaki M. J. Am. Chem. Soc.  2003,  125:  5644 
  • For the fluoride ion-catalyzed aldol reaction of ethyl trimethylsilylacetate, see:
  • 10a Nakamura E. Shimizu M. Kuwajima I. Tetrahedron Lett.  1976,  1699 
  • 10b Nakamura E. Hashimoto K. Kuwajima I. Tetrahedron Lett.  1978,  2079 
  • α-DMS-esters 1 can be easily prepared from the corresponding esters by deprotonation with LiNi-Pr2 followed by silylation with Me2SiHCl. See:
  • 11a Miura K. Sato H. Tamaki K. Ito H. Hosomi A. Tetrahedron Lett.  1998,  39:  2585 
  • 11b Kaimakliotis C. Fry AJ. J. Org. Chem.  2003,  68:  9893 
  • 11c

    Typical Procedure for the Preparation of α-DMS-esters 1
    Under N2 atmosphere, n-BuLi (1.61 M in hexane, 62 mL, 100 mmol) was added to a solution of i-Pr2NH (14 mL, 100 mmol) in THF (100 mL) over 5 min at 0 °C. After 10 min, the mixture was cooled to -78 °C. Then, EtOAc (9.3 mL, 95 mmol) was added to the solution of LDA over 5 min. After 2 h, the reaction mixture was treated with chlorodimethyl-silane (12.2 mL, 110 mmol) and gradually warmed to r.t. over 12 h. The resultant mixture was diluted with dry pentane (50 mL) and filtered through Celite®. After evaporation of the filtrate, the residual oil was diluted with dry pentane (50 mL) again, filtered through Celite®, and evaporated. Purification of the crude product by distillation gave 1a (9.2 g, 63 mmol) in 66% yield.
    Compound 1a: bp 58-60 °C (180 Torr). IR (neat): 1669 (C=O), 1253, 1205 cm-1. 1H NMR (CDCl3): δ = 0.20 (d, J = 3.6 Hz, 6 H), 1.23 (t, J = 6.9 Hz, 3 H), 1.96 (d, J = 3.3 Hz, 2 H), 4.06 (sept, d, J = 3.6, 3.3 Hz, 1 H), 4.10 (q, J = 6.9 Hz, 2 H). 13C NMR (CDCl3): δ = -4.36 (CH3 × 2), 14.09 (CH3), 24.08 (CH2), 59.91 (CH2), 172.54 (C). Anal. Calcd for C6H14O2Si (%): C, 49.53; H, 9.69. Found: C, 49.27; H, 9.65.

  • The Reformatsky reaction of ethyl bromoacetate with 5g shows much lower stereoselectivity toward equatorial attack. See:
  • 13a Screttas CG. Smonou IC. J. Org. Chem.  1988,  53:  893 
  • 13b Pansard J. Gaudemar M. Bull. Soc. Chim. Fr.  1973,  3472, Pt. 2 
  • Pioneer works:
  • 14a Narasaka K. Soai K. Mukaiyama T. Chem. Lett.  1974,  1223 
  • 14b Narasaka K. Soai K. Aikawa K. Mukaiyama T. Bull. Chem. Soc. Jpn.  1976,  49:  779 
  • Recent reports on the Lewis acid-catalyzed reactions:
  • 15a Ishihara K. Hanaki N. Funahashi M. Miyata M. Yamamoto H. Bull. Chem. Soc. Jpn.  1995,  68:  1721 
  • 15b Chen J. Sakamoto K. Orita A. Otera J. Tetrahedron  1998,  54:  8411 
  • 15c Marx A. Yamamoto H. Angew. Chem. Int. Ed.  2000,  39:  178 
  • For asymmetric reactions, see:
  • 15d Kobayashi S. Suda S. Yamada M. Mukaiyama T. Chem. Lett.  1994,  97 
  • 15e Bernardi A. Colombo G. Scolastico C. Tetrahedron Lett.  1996,  37:  8921 
  • 15f Kitajima H. Katsuki T. Synlett  1997,  568 
  • 15g Evans DA. Scheidt KA. Johnston JN. Willis MC. J. Am. Chem. Soc.  2001,  123:  4480 
  • Lewis base catalyzed reactions:
  • 16a RajanBabu TV. J. Org. Chem.  1984,  49:  2083 
  • 16b Mukaiyama T. Nakagawa T. Fujisawa H. Chem. Lett.  2003,  32:  56 
  • 16c Nakagawa T. Fujisawa H. Nagata Y. Mukaiyama T. Chem. Lett.  2004,  33:  1016 
  • 16d Mukaiyama T. Tozawa T. Fujisawa H. Chem. Lett.  2004,  33:  1410 
  • 16e Tozawa T. Fujisawa H. Mukaiyama T. Chem. Lett.  2004,  33:  1454 
  • 16f Tozawa T. Yamane Y. Mukaiyama T. Chem. Lett.  2005,  34:  514 
  • 16g Nakagawa T. Fujisawa H. Nagata Y. Mukaiyama T. Bull. Chem. Soc. Jpn.  2005,  78:  236 
  • Aldol reactions of α-enones:
  • 17a Hanyuda K. Hirai K. Nakai T. Synlett  1997,  31 
  • 17b Braun M. Mai B. Ridder D. Eur. J. Org. Chem.  2001,  3155 
  • 17c Mitani M. Ishimoto K. Koyama R. Chem. Lett.  2002,  1142 
  • 18 The bond dissociation energy of Si-Cl in Me3SiCl (472 kJ/mol) is larger than that of Si-Br in Me3SiBr (402 kJ/mol). See: Walsh R. In The Chemistry of Organic Silicon Compounds   Vol. 1:  Patai S. Rappoport Z. Wiley; Chichester UK: 1989.  Chap. 5. p.371 
12

General Procedure for the Aldol Reaction of 1 with Aldehydes 2
Under the atmosphere, dry LiCl (5.5 mg, 0.13 mmol) was added to a two-necked, round-bottomed flask (10 mL), which was connected with a nitrogen balloon. After introduction of nitrogen, DMF (1.0 mL) was added to the flask. The mixture was warmed to 30 °C under stirring. After 10 min, 2 (0.50 mmol) and 1 (0.60 mmol) were added to the mixture. After being stirred for 5 h, the reaction mixture was treated with 2 M aq HCl (1 mL) for 5 min and neutralized with sat. aq NaHCO3. The aqueous mixture was extracted with EtOAc (3 × 10 mL). The extract was dried over Na2SO4 and evaporated. The crude product was purified by silica gel column chromatography.

19

As shown in Table [3] , the reaction of 1a with 8a proceeded efficiently irrespective of the metal chloride used. This observation may be due to higher coordinating ability (Lewis basicity) of α-enones, which allows carbonyl activation even with less Lewis acidic metal ions. For the coordinating ability of α-enones, see ref. 17a.