Subscribe to RSS
DOI: 10.1055/s-2005-871968
Urea-Hydrogen Peroxide Complex
Publication History
Publication Date:
20 July 2005 (online)
Biographical Sketches
Introduction
The hydrogen bonded urea-hydrogen peroxide complex [CO(NH2)2·H2O2, UHP] is a cheap and commercially available white crystalline solid (mp 84-86 °C, dec.) obtained by recrystallization of urea from commercially available 33% aqueous hydrogen peroxide. [1]
Its stability at room temperature, high hydrogen peroxide content (36.2%) and the potential for releasing it in a controlled manner, [2] as well as its solubility in organic solvents (alcohols, dichloromethane) makes it a good and safe substitute for anhydrous hydrogen peroxide (not available anymore) in most oxidation reactions.
UHP has been used for the epoxidation of a wide range of alkenes. [3] It is capable of oxidizing a number of functional groups: nitriles to amides, [4] oximes to nitroalkanes, [5] sulfides to sulfoxides [6] or sulfones, [7] aldehydes to acids, [8] etc. UHP has also been found useful for heteroatom oxidation reactions, [9] as well as to carry out Baeyer-Villiger [10] and related reactions. In recent years, UHP has proved to be effective in solid state reactions, both under heating [11] or microwave irradiation, [12] so becoming an interesting eco-friendly reagent.
Abstracts
(A) In the presence of anhydrides, alkenes are epoxidized with UHP through the in situ formation of peroxycarboxylic acids.
[3]
A large excess of UHP has to be used to avoid the build-up of high concentrations of diacyl peroxides. Phthalic anhydride supported on insoluble polystyrene-divinylbenzene (PS-DVB) and UHP allows the epoxidation of different alkenes in an efficient method where purification was limited to filtration, solvent change and evaporation. [13] |
|
(B) Epoxidation of α,β-unsaturated ketones with UHP requires the presence of a base. [3a] [b] Quinones could also be epoxidized combining UHP and a base, using alcohols or dichloromethane as the solvent system. [14] Asymmetric epoxidation of α,β-unsaturated aldehydes has been achieved with excellent yields and enantioselectivities. [3c] |
|
(C) Regioselective epoxidation of monoterpenes in the liquid phase using titanosilicates TS-1 and TiAlb combined with UHP as an oxidant has been achieved. [15] Epoxidation occurrs exclusively at the more electron-rich bond. Hutchings et al. [16] have also studied the influence of the hydroxy group in the regioselectivity of the epoxidation in linalool, geraniol and citronellol. |
|
(D) Methyl trioxorhenium (MTO) has proved an efficient catalyst for regio- and stereospecific epoxidation of different substrates [17] both in room temperature ionic liquids (based on N,N¢-dialkylimidazolium or N-alkylpyridinium cations) [18] and in non-protic solvents such as dichloromethane. [19] Diethyl ether as solvent and pyridine as the ligand gives the optimal results for epoxidation of cholesterol. [20] a-Hydroxy and a-siloxy esters are obtained from methyl trimethylsilyl ketene acetals through the corresponding epoxide under similar conditions. [21] |
|
(E) Exo epoxidation of norbornene has been carried out over vanadium substituted phosphomolybdic acid catalysts with H2O2, UHP or TBHP. UHP shows similar conversion rates as H2O2, but better selectivities (97% of the epoxide achieved) due to the slow and controlled release of hydrogen peroxide and the less acidic character of the reaction medium. [22] |
|
(F) Aromatic aldehydes are oxidized to the corresponding benzoic acids in good to excellent yields. [8] |
|
(G) The oxidation of sulfide to sulfoxide has been achieved using rhenium catalysts in non-aqueous media. Triphenylphosphine ligands in the catalyst proved to be effective to stop the reaction at the sulfoxide stage in good yields.
[6]
Using MTO-UHP the reaction proceeds further to the sulfone stage. A combination of UHP and trifluoroacetic anhydride in acetonitrile affords the sulfone in excellent yields.
[7]
Solvent free oxidation of sulfides with UHP and tetrabutylammonium phosphomolybdate catalyst on fluorapatite was achieved at 4-25 °C giving the corresponding sulfoxides or sulfones selectively by controlling the amount of UHP employed. [23] |
|
(H) The oxidation of unactivated C-H bonds with UHP has been reported. In the presence of catalytic amounts of a vanadium salt (Bu4NVO3) and pyrazine-2-carboxylic acid in acetonitrile, the hydroperoxide of cyclohexane was formed. [24] Substituted toluenes were selectively oxidized to aldehydes with UHP in the presence of cobalt(II) acetate, acetic acid and an inorganic bromide source. [25] Oxidation of cyclohexane with UHP in TFA gave the cyclohexyl trifluoroacetate in good yield. [26] |
|
(I) Oxidative halogenation of arenes with UHP and iodine in ethyl acetate has been reported.
[27]
Skulski et al. have also described an efficient solid state chlorination of iodoarenes with UHP affording dichloroiodoarenes in 64-98% yields after 15 minutes at 85 °C. [28] |
|
- 1
Lu C.-S.Hughes EW.Giguère PA. J. Am. Chem. Soc. 1941, 63: 1507 - 2
Gonsalves AMR.Johnstone RAW.Pereira MM.Shaw J. J. Chem Res., Synop. 1991, 208 -
3a
Cooper MS.Heaney H.Newbold AJ.Sanderson WR. Synlett 1990, 533 -
3b
Fan CL.Lee WD.Teng NW.Sun YC.Chen K. J. Org. Chem. 2003, 68: 9816 -
3c
Marigo M.Jranzén J.Toulsen TB.Whuang W.KøØgensen KA. J. Am. Chem. Soc. 2005, 127: 6964 - 4
Balicki R. Synth. Commun. 1993, 23: 3149 - 5
Ballini R.Marcantoni E.Petrini M. Tetrahedron Lett. 1992, 33: 4835 - 6
Gunaratne HQN.McKervey MA.Feutren S.Finlay J.Boyd J. Tetrahedron Lett. 1998, 39: 5655 - 7
Balicki R. Synth. Commun. 1999, 29: 2235 - 8
Heaney H.Newbold AJ. Tetrahedron Lett. 2001, 42: 6607 - 9
Heaney H. Aldrichimica Acta 1993, 26: 35 - 10
Astudillo L.Galindo A.González AG.Mansilla H. Heterocycles 1993, 36: 1075 - 11
Varma RS.Naicker KP. Org. Lett. 1999, 1: 189 - 12
Paul S.Nanda P.Gupta R. Synlett 2004, 531 - 13
Ghiron C.Nannetti L.Taddei M. Tetrahedron Lett. 2005, 46: 1643 - 14
Valderrama JA.González MF.Torres C. Heterocycles 2003, 60: 2343 - 15
Schofield LJ.Kerton OJ.McMorn P.Belthell D.Ellwood S.Hutchings GJ. J. Chem. Soc., Perkin Trans. 2 2002, 2064 - 16
Schofield LJ.Kerton OJ.McMorn P.Belthell D.Ellwood S.Hutchings GJ. J. Chem. Soc., Perkin Trans. 2 2002, 1475 -
17a
Soldaini G. Synlett 2004, 1849 -
17b
Goti A.Cardona F.Soldaini G. Org. Synth. 2005, 81: 204 - 18
Abu-Omar MM.Owens GS.Durazo A. In Ionic Liquids as Green Solvents 856:Rogers RD.Seddon KR. ACS Symposium Series; 2003. p.277 -
19a
Boehlow TR.Spilling CD. Tetrahedron Lett. 1996, 37: 2717 -
19b
Baldwin SW.Long A. Org. Lett. 2004, 6: 1653 - 20
Musumeci D.Sica D. Steroids 2002, 67: 661 - 21
Stankoviæ S.Espenson JH. J. Org. Chem. 2000, 65: 5528 - 22
Raj NKK.Ramaswamy AV.Manikandan P. J. Mol. Catal. A: Chem. 2005, 227: 37 - 23
Sasaki Y.Ushimaru K.Iteya K.Nakayama H.Yamaguchi S.Ichihara J. Tetrahedron Lett. 2004, 45: 9513 - 24
Shul’pin GB.Süss-Fink G. J. Chem. Soc., Perkin Trans. 2 1995, 1459 - 25
Jones CW.Hackett A.Pattinson I.Johnstone A.Wilson SL. J. Chem. Res., Synop. 1996, 438 - 26
Moody CJ.O’Connell JL. Chem. Commun. 2000, 1311 - 27
Lulinski P.Kryska A.Sosnowski M.Skulski L. Synthesis 2004, 441 - 28
Zielinska A.Skulski L. Tetrahedron Lett. 2004, 45: 1087
References
- 1
Lu C.-S.Hughes EW.Giguère PA. J. Am. Chem. Soc. 1941, 63: 1507 - 2
Gonsalves AMR.Johnstone RAW.Pereira MM.Shaw J. J. Chem Res., Synop. 1991, 208 -
3a
Cooper MS.Heaney H.Newbold AJ.Sanderson WR. Synlett 1990, 533 -
3b
Fan CL.Lee WD.Teng NW.Sun YC.Chen K. J. Org. Chem. 2003, 68: 9816 -
3c
Marigo M.Jranzén J.Toulsen TB.Whuang W.KøØgensen KA. J. Am. Chem. Soc. 2005, 127: 6964 - 4
Balicki R. Synth. Commun. 1993, 23: 3149 - 5
Ballini R.Marcantoni E.Petrini M. Tetrahedron Lett. 1992, 33: 4835 - 6
Gunaratne HQN.McKervey MA.Feutren S.Finlay J.Boyd J. Tetrahedron Lett. 1998, 39: 5655 - 7
Balicki R. Synth. Commun. 1999, 29: 2235 - 8
Heaney H.Newbold AJ. Tetrahedron Lett. 2001, 42: 6607 - 9
Heaney H. Aldrichimica Acta 1993, 26: 35 - 10
Astudillo L.Galindo A.González AG.Mansilla H. Heterocycles 1993, 36: 1075 - 11
Varma RS.Naicker KP. Org. Lett. 1999, 1: 189 - 12
Paul S.Nanda P.Gupta R. Synlett 2004, 531 - 13
Ghiron C.Nannetti L.Taddei M. Tetrahedron Lett. 2005, 46: 1643 - 14
Valderrama JA.González MF.Torres C. Heterocycles 2003, 60: 2343 - 15
Schofield LJ.Kerton OJ.McMorn P.Belthell D.Ellwood S.Hutchings GJ. J. Chem. Soc., Perkin Trans. 2 2002, 2064 - 16
Schofield LJ.Kerton OJ.McMorn P.Belthell D.Ellwood S.Hutchings GJ. J. Chem. Soc., Perkin Trans. 2 2002, 1475 -
17a
Soldaini G. Synlett 2004, 1849 -
17b
Goti A.Cardona F.Soldaini G. Org. Synth. 2005, 81: 204 - 18
Abu-Omar MM.Owens GS.Durazo A. In Ionic Liquids as Green Solvents 856:Rogers RD.Seddon KR. ACS Symposium Series; 2003. p.277 -
19a
Boehlow TR.Spilling CD. Tetrahedron Lett. 1996, 37: 2717 -
19b
Baldwin SW.Long A. Org. Lett. 2004, 6: 1653 - 20
Musumeci D.Sica D. Steroids 2002, 67: 661 - 21
Stankoviæ S.Espenson JH. J. Org. Chem. 2000, 65: 5528 - 22
Raj NKK.Ramaswamy AV.Manikandan P. J. Mol. Catal. A: Chem. 2005, 227: 37 - 23
Sasaki Y.Ushimaru K.Iteya K.Nakayama H.Yamaguchi S.Ichihara J. Tetrahedron Lett. 2004, 45: 9513 - 24
Shul’pin GB.Süss-Fink G. J. Chem. Soc., Perkin Trans. 2 1995, 1459 - 25
Jones CW.Hackett A.Pattinson I.Johnstone A.Wilson SL. J. Chem. Res., Synop. 1996, 438 - 26
Moody CJ.O’Connell JL. Chem. Commun. 2000, 1311 - 27
Lulinski P.Kryska A.Sosnowski M.Skulski L. Synthesis 2004, 441 - 28
Zielinska A.Skulski L. Tetrahedron Lett. 2004, 45: 1087