Subscribe to RSS
DOI: 10.1055/s-2005-872107
Organolithiums in Enantioselective Additions to π* and σ* Carbon-Oxygen Electrophiles
Publication History
Publication Date:
29 July 2005 (online)
Abstract
Mediated by chiral, non-racemic ligands, organolithiums add enantioselectively to C=O functions of carbonyl compounds (aldehydes and ketones) or cleave enantioselectively C-O units in strained ethers (epoxides and oxetanes) as well as in acetals. The achievement of high enantioselectivities is desirable and hence factors controlling these enantioselectivities are the subject of intensive research. Beneficial external influences on enantioselectivity are low temperatures, suitable solvents (e.g. dimethoxymethane, dimethyl ether) and the exclusion of salt impurities. Organolithium reagents and ligands lithiated in situ form mixed anionic aggregates, some of which can be isolated and even structurally studied. The improved understanding of the nature of such chiral organolithium aggregates provides the way to a more rational design of new enantioselective organolithium reagents.
1 Introduction
2 Additions to Aldehydes
3 Additions to Ketones
4 Additions to Epoxides and Oxetanes
5 Additions to Acetals
6 Conclusions
Key words
organolithiums - enantioselectivity - chiral ligands - carbonyl compounds - strained ethers - acetals
- For previous reviews, see:
-
1a
Goldfuss B. Enantio-selective Addition of Organolithiums to C=O Groups and Ethers, In Organolithiums in Enantioselective SynthesisHodgson DM. Springer; Heidelberg: 2003. Topics in Organometallic Chemistry, Vol. 5: 21 -
1b Clayden J.; Organolithiums: Selectivity for Synthesis
Pergamon Press;
Amsterdam:
2002.
-
1c
Corey EJ.Cheng XM. The Logic of Chemical Synthesis Wiley; New York: 1995. -
1d
Huryn DM. In Comprehensive Organic Synthesis Vol. 1:Trost BM.Fleming I. Pergamon Press; Amsterdam: 1991. p.49 - For quantitative assessments of nucleophilicity, see:
-
2a
Kempf B.Hampel N.Ofial AR.Mayr H. Chem. Eur. J. 2003, 9: 2209 -
2b
Minegishi S.Mayr H. J. Am. Chem. Soc. 2003, 125: 286 -
2c
Mayr H.Kempf B.Ofial AR. Acc. Chem. Res. 2003, 36: 66 -
2d
Mayr H.Patz M.Gotta MF.Ofial AR. Pure Appl. Chem. 1998, 70: 1993 -
3a
Lithium Chemistry
Sapse A.-M.Schleyer PvR. Wiley; New York: 1995. -
3b
Lambert C.Schleyer PvR. Angew. Chem., Int. Ed. Engl. 1994, 33: 1129 ; Angew. Chem. 1994, 106, 1187 -
3c
Lambert C.Schleyer PvR. In Methoden der organischen Chemie (Houben-Weyl) 4th ed., Vol. E19d: Thieme; Stuttgart: 1993. p.1 -
3d
Bauer W.Schleyer PvR. In Advances in Carbanion Chemistry Vol. 1:Snieckus V. Jai Press; Greenwich: 1992. -
4a
Berrisford DJ.Bolm C.Sharpless KB. Angew. Chem., Int. Ed. Engl. 1995, 34: 1059 ; Angew. Chem. 1995, 107, 1159 -
4b
Noyori R.Kitamura M. Angew. Chem., Int. Ed. Engl. 1991, 30: 49 ; Angew. Chem. 1991, 103, 34 - 5
Cohen HL.Wright GF. J. Org. Chem. 1953, 18: 432 -
6a
Allentoff N.Wright GF. J. Org. Chem. 1957, 22: 1 -
6b
French W.Wright GF. Can. J. Chem. 1964, 42: 2474 - 7
Iffland DC.Davis JE. J. Org. Chem. 1977, 42: 4150 -
8a
Basu A.Thayumanavan S. Angew. Chem., Int. Ed. Engl. 2002, 43: 716 ; Angew. Chem. 2002, 114, 740 -
8b
Goldfuss B. Nachr. Chem. 2001, 49: 1333 -
8c
Hoppe D.Hense T. Angew. Chem., Int. Ed. Engl. 1997, 36: 2282 ; Angew. Chem. 1997, 109, 2376 -
9a
Noyori R.Suga S.Kawai K.Okada S.Kitamura M. Pure Appl. Chem. 1988, 60: 1597 -
9b
Tomioka K. Synthesis 1990, 541 -
9c
Noyori R. Asymmetric catalysis in organic synthesis Wiley; New York: 1994. - 10
Juaristi E.Beck AK.Hansen J.Matt T.Mukhopadhyay T.Simson M.Seebach D. Synthesis 1993, 1271. Catalytic variants of aldol-type reactions are also possible with chiral Lewis acids or organocatalytic with proline -
11a
Nozaki H.Aratani T.Toraya T. Tetrahedron Lett. 1968, 38: 4097 -
11b
Nozaki H.Aratani T.Toraya T.Noyori R. Tetrahedron 1971, 27: 905 - 12
Seebach D.Dörr H.Bastani B.Ehrig V. Angew. Chem., Int. Ed. Engl. 1969, 8: 982 ; Angew. Chem. 1969, 81, 1002 -
13a
Seebach D.Kalinowski H.-O.Bastani B.Crass G.Daum H.Dörr H.DuPreez NP.Ehrig V.Langer W.Nüssler C.Oei H.-A.Schmidt M. Helv. Chim. Acta 1977, 60: 301 -
13b
Seebach D.Oei H.-A.Daum H. Chem. Ber. 1977, 110: 2316 -
13c
Seebach D.Langer W. Helv. Chim. Acta 1979, 62: 1701 -
13d
Seebach D.Langer W. Helv. Chim. Acta 1979, 62: 1710 - 14
Seebach D.Crass G.Wilka E.-M.Hilvert D.Brunner E. Helv. Chim. Acta 1979, 62: 2695 - 15
Mukaiyama T.Soai K.Kobayashi S. Chem. Lett. 1978, 219 -
16a
Soai K.Mukaiyama T. Chem. Lett. 1978, 491 -
16b
Mukaiyama T.Soai K.Sato T.Shimizu H.Suzuki K. J. Am. Chem. Soc. 1979, 101: 1455 - 17
Mukaiyama T.Suzuki K. Chem. Lett. 1980, 255 - 18
Johnson WS.Frei B.Gopalan AS. J. Org. Chem. 1981, 46: 1512 - 19
Mazaleyrat J.-P.Cram DJ. J. Am. Chem. Soc. 1981, 103: 4585 - 20
Eleveld MB.Hogeveen H. Tetrahedron Lett. 1984, 25: 5187 - 21
Arvidsson PI.Hilmersson G.Davidsson . Chem. Eur. J. 1999, 5: 2348 - 22
Whitesell JK.Jaw B.-R. J. Org. Chem. 1981, 46: 2798 - 23
Colombo L.Gennari C.Poli G.Scolastico C. Tetrahedron 1982, 38: 2725 - 24
Alberts AH.Wynberg H. J. Am. Chem. Soc. 1989, 111: 7265 - 25 For an early report on the role of mixed aggregates, see:
Seebach D.Amstutz R.Dunitz JD. Helv. Chim. Acta 1981, 64: 2622 - 26
Ye M.Logaraij S.Jackman LM.Hillegass K.Hirsh KA.Bollinger AM.Grosz AL. Tetrahedron 1994, 50: 6109 - 27
Kang J.Kim JI.Lee JH. Bull. Korean Chem. Soc. 1994, 15: 865 - 28 Enantioselective protonation and alkylation with mixed aggregates of chiral 3-aminopyrrolidine lithium amides:
Flinois K.Yuan Y.Bastide C.Harrison-Marchand A.Maddaluno J. Tetrahedron 2002, 58: 4707 - 29
Corruble A.Valnot J.-Y.Maddaluno J.Duhamel P. Tetrahedron: Asymmetry 1997, 8: 1519 -
30a
Corruble A.Valnot J.-Y.Maddaluno J.Duhamel P. J. Org. Chem. 1998, 63: 8266 -
30b For a more recent computational and experimental study, see:
Corruble A.Davoust D.Desjardins S.Fressigne C.Giessner-Prettre C.Harrison-Marchand A.Houte H.Lasne M.-C.Maddaluno J.Oulyadi H.Valnot J.-Y. J. Am. Chem. Soc. 2002, 124: 15267 - 31
Schön M.Naef R. Tetrahedron: Asymmetry 1999, 10: 169 - 32
Knollmüller M.Ferencic M.Gärtner P. Tetrahedron: Asymmetry 1999, 10: 3969 - 33
Aspinall HC.Dwyer JLM.Greeves N.Steiner A. Organometallics 1999, 18: 1366 - 34 Review on RLi/ROM aggregates:
Lochmann L. Eur. J. Inorg. Chem. 2000, 1115 - 35
McGarrity JF.Ogle CA.Brich Z.Loosli H.-R. J. Am. Chem. Soc. 1985, 107: 1810 -
36a
Snieckus V. Chem. Rev. 1990, 90: 879 -
36b
Hommes NJRvE.Schleyer PvR. Tetrahedron 1994, 50: 5903 -
36c
Hommes NJRvE.Schleyer PvR. Angew. Chem., Int. Ed. Engl. 1992, 31: 755 ; Angew. Chem. 1992, 104, 768 -
36d
Goldfuss B.Schleyer PvR.Handschuh S.Hampel F. J. Organomet. Chem. 1998, 552: 285 - 37 Activation via deaggregation of organolithiums by coordinating solvents (THF) or ligands (TMEDA) is frequently used in lithiations of hydrocarbons:
Brandsma L.Verkruijsse H. Preparative Polar Organometallic Chemistry Springer; Heidelberg: 1987. -
38a
Streitwieser A.Wang DZ.-R. J. Am. Chem. Soc. 1999, 121: 6213 -
38b
Wang DZ.Kim Y.-J.Streitwieser A. J. Am. Chem. Soc. 2000, 122: 10754 -
39a
Novak DP.Brown TL. J. Am. Chem. Soc. 1972, 94: 3793 -
39b
Kieft RL.Novak DP.Brown TL. J. Organomet. Chem. 1974, 77: 299 -
39c
Eppers O.Günther H. Helv. Chim. Acta 1990, 73: 207 - 40
Seebach D. Angew. Chem., Int. Ed. Engl. 1988, 27: 1624 ; Angew. Chem. 1988, 100, 1685 -
41a
Weidemann B.Seebach D. Angew. Chem., Int. Ed. Engl. 1983, 22: 40 ; Angew. Chem. 1983, 95, 12 -
41b
Pu L.Hong-Bin Y. Chem. Rev. 2001, 101: 757 -
41c
Seebach D.Beck AK.Imwinkelried R.Roggo S.Wonnacott A. Helv. Chim. Acta 1987, 70: 954 -
41d
Bolm C.Hildebrand JP.Muniz K.Hermanns N. Angew. Chem., Int. Ed. Engl. 2001, 40: 3284 ; Angew. Chem. 2001, 113, 3383 -
41e
Weber B.Seebach D. Angew. Chem., Int. Ed. Engl. 1992, 31: 84 ; Angew. Chem. 1992, 104, 96 -
41f
Weber B.Seebach D. Tetrahedron 1994, 50: 6117 - Computational analyses:
-
41g
Rudolph J.Rasmussen T.Bolm C.Norrby P.-O. Angew. Chem., Int. Ed. Engl. 2003, 42: 3002 ; Angew. Chem. 2003, 115, 3110 -
41h
Goldfuss B.Steigelmann M.Rominger F. Eur. J. Org. Chem. 2000, 1785 -
41i
Goldfuss B.Steigelmann M. J. Mol. Model. 2000, 6: 166 -
41j
Goldfuss B.Steigelmann M.Khan SI.Houk KN. J. Org. Chem. 2000, 65: 77 - 42
Armstrong DR.Davies RP.Raithby PR.Snaith R.Wheatley AEH. New J. Chem. 1999, 23: 499 - 43
Hilmersson G.Davidsson O. J. Organomet. Chem. 1995, 489: 175 - 44
Arvidsson PI.Ahlberg P.Hilmersson G. Chem. Eur. J. 1999, 5: 1348 - 45
Arvidsson PI.Davidsson .Hilmersson G. Tetrahedron: Asymmetry 1999, 10: 527 -
46a
Granander J.Sott R.Hilmersson G. Tetrahedron 2002, 58: 4717 - More recently analogue mixed lithioacetonitrile aggregates were studies by 6Li, 15N and 13C couplings:
-
46b
Sott R.Granander J.Hilmersson G. J. Am. Chem. Soc. 2004, 126: 6798 -
46c
Sott R.Granander J.Hilmersson G. Chem. Eur. J. 2002, 8: 2081 - 47 For recent studies on enantiopure and racemic lithio dimethylaminomethyl benzenes, see:
Kronenburg CMP.Rijnberg E.Jastrzebski JTBH.Kooijman H.Spek AL.Koten Gv. Eur. J. Org. Chem. 2004, 153 - 48
Williard PG.Sun C. J. Am. Chem. Soc. 1997, 119: 11693 - 49
Hilmersson G.Malmros B. Chem. Eur. J. 2001, 7: 331 - For catalysts based on modular fenchols, see:
-
50a
Steigelmann M.Nisar Y.Rominger F.Goldfuss B. Chem. Eur. J. 2002, 8: 5211 -
50b
Goldfuss B.Löschmann T.Rominger F. Chem. Eur. J. 2004, 10: 5422 -
51a
Goldfuss B.Khan SI.Houk KN. Organometallics 1999, 18: 2927 -
51b
Goldfuss B.Steigelmann M.Rominger F. Angew. Chem. Int. Ed. 2000, 39: 4133 ; Angew. Chem. 2000, 112, 4299 -
51c
Goldfuss B.Steigelmann M.Rominger F.Urtel H. Chem. Eur. J. 2001, 7: 4456 -
51d
Goldfuss, B.; Steigelmann, M.; Rominger, F.; hitherto unpublished results.
- 52
Kottke T.Stalke D. Angew. Chem., Int. Ed. Engl. 1993, 32: 580 ; Angew. Chem. 1993, 105, 619 - 53 While the 3:1 stoichiometry of this lithium butylide phenyl fencholate is analoguous to its anisol derivative, the lack of methoxy groups gives rise to different butylide encapsulation:
Goldfuss B.Steigelmann M.Löschmann T.Schilling G.Rominger F. Chem. Eur. J. 2005, 11: 4019 - 54
Briggs TF.Winemiller MD.Xiang B.Collum DB. J. Org. Chem. 2001, 66: 6291 - 55
Sun X.Winemiller MD.Xiang B.Collum DB. J. Am. Chem. Soc. 2001, 123: 8039 - 56
Jiang B.Feng Y. Tetrahedron Lett. 2002, 43: 2975 -
57a
Tzalis D.Knochel P. Angew. Chem., Int. Ed. Engl. 1999, 38: 1463 ; Angew. Chem. 1999, 111, 1547 -
57b
Frantz DE.Fässler R.Carreira E. J. Am. Chem. Soc. 2000, 122: 1806 - 58
Corey EJ.Guzman-Perez A. Angew. Chem. Int. Ed. 1998, 37: 388 ; Angew. Chem. 1998, 110, 402 -
59a
Organometallics in Synthesis
Schlosser M. Wiley; New York: 2002. p.1 -
59b
Wakefield BJ. In The Chemistry of Organolithium Compounds Pergamon Press; Oxford: 1974. p.129 -
60a
Thompson A.Corley EG.Huntington MF.Grabowski EJJ.Remenar JF.Collum DB. J. Am. Chem. Soc. 1998, 120: 2028 -
60b
Pierce ME.Parsons RL.Radesca LA.Lo YS.Silverman S.Moore JR.Islam Q.Choudhury A.Fortunak JMD.Nguyen D.Luo C.Morgan SJ.Davis WP.Confalone PN.Chen C.-Y.Tillyer RD.Frey L.Tan L.Xu F.Zhao D.Thompson AS.Corley EG.Grabowski EJJ.Reamer R.Reider PJ. J. Org. Chem. 1998, 63: 8536 - For recent studies on lithium acetylide additions to quinazolinones, see:
-
60c
Briggs TF.Winemiller MD.Collum DB.Parson RL.Davulcu AH.Harris GD.Fortunak JM.Confalone PN. J. Am. Chem. Soc. 2004, 126: 5427 - 61
Choudhury A.Moore JR.Pierce ME.Fortunak JM.Valvis I.Confalone PN. Org. Process Res. Dev. 2003, 7: 324 - 62
Thompson AS.Corley EG.Huntington MF.Grabowski EJJ. Tetrahedron Lett. 1995, 36: 8937 -
63a
Huffman MA.Yasuda N.DeCamp AE.Grabowski EJJ. J. Org. Chem. 1995, 60: 1590 -
63b
Parsons RL.Fortunak JM.Dorow RL.Harris GD.Kauffman GS.Nugent WA.Winemiller MD.Briggs TF.Xiang B.Collum DB. J. Am. Chem. Soc. 2001, 123: 9135 -
63c
Rutherford JL.Hoffmann D.Collum DB. J. Am. Chem. Soc. 2002, 124: 264 - 64
Lucht BL.Collum DB. J. Am. Chem. Soc. 1994, 116: 7949 - 65
Xu F.Reamer RA.Tillyer R.Cummins JM.Grabowski EJJ.Reider PJ.Collum DB.Huffman JC. J. Am. Chem. Soc. 2000, 122: 11212 -
66a
Ramon JD.Yus M. Tetrahedron Lett. 1998, 39: 1239 -
66b
Dosa PI.Fu GC. J. Am. Chem. Soc. 1998, 120: 445 - 67
Tan L.Chen C.-Y.Tillyer RD.Grabowski EJJ.Reider PJ. Angew. Chem. Int. Ed. 1999, 38: 711 ; Angew. Chem. 1999, 111, 724 - 68 For a computational study, see:
Banks HD. J. Org. Chem. 2003, 68: 2639 - 69
Lewis Acids in Organic Synthesis
Yamamoto H. Wiley-VCH; Weinheim: 2000. - 70
Schneider C.Brauner J. Eur. J. Org. Chem. 2001, 4445 - 71
Yamaguchi M.Hirao I. Tetrahedron Lett. 1983, 24: 391 - 72
Hodgson DM.Gibbs AR.Lee GP. Tetrahedron 1996, 52: 14361 -
73a
Mizuno M.Kanai M.Iida A.Tomioka K. Tetrahedron: Asymmetry 1996, 7: 2483 -
73b
Mizuno M.Kanai M.Iida A.Tomioka K. Tetrahedron 1997, 53: 19699 - 74
Alexakis A.Vrancken E.Mangeney P. Synlett 1998, 1165 - 75
Alexakis A.Vrancken E.Mangeney P. J. Chem. Soc., Perkin Trans. 1 2000, 3354 - 76
Oguni N.Miyagi Y.Itoh K. Tetrahedron Lett. 1998, 39: 9023 -
77a
Seebach D.Imwinkelried R.Weber T. In Modern Synthetic Methods Vol. 4:Scheffold R. Springer; Heidelberg: 1986. p.125 -
77b
Alexakis A.Mhamdi F.Lagasse F.Mangeney P. Tetrahedron: Asymmetry 1996, 7: 3343 - For oxazaborolidinone-mediated enantioselective ring-cleavage of acetals with weaker nucleophiles, see:
-
78a
Harada T.Egusa T.Igarashi Y.Kinugasa M.Oku A. J. Org. Chem. 2002, 67: 7080 -
78b
Harada T.Imai K.Oku A. Synlett 2002, 972 -
79a
Kinugasa M.Harada T.Oku A. J. Org. Chem. 1996, 61: 6772 -
79b
Kinugasa M.Harada T.Oku A. Tetrahedron Lett. 1998, 39: 4529 - 80
Müller P.Nury P. Org. Lett. 2000, 2: 2845 - 81
Müller P.Nury P.Bernardinelli G. Eur. J. Org. Chem. 2001, 4137 - 82 For recent accounts on enantioselective organolithium bases, see for example Ref. 8c, and contributions in
Organolithiums in Enantioselective Synthesis, Topics in Organometallic Chemistry, Vol. 5
Hodgson DM. Springer; Heidelberg: 2003.