Semin Vasc Med 2005; 5(2): 172-182
DOI: 10.1055/s-2005-872402
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

Homocysteine and Endothelial Function in Human Studies

Stuart J. Moat1 , Ian F. W. McDowell1
  • 1Department of Medical Biochemistry and Immunology, Wales College of Medicine, Cardiff University and the University Hospital of Wales, Cardiff, United Kingdom
Further Information

Publication History

Publication Date:
27 July 2005 (online)

ABSTRACT

The endothelium plays a key role in the pathophysiology of vascular disease. Impaired flow-mediated dilatation (FMD) is a measure of endothelial dysfunction resulting from reduced bioavailability of nitric oxide (NO). Patients with homocystinuria manifest with impaired FMD, but in mild hyperhomocysteinemia, the evidence is conflicting. Oral loading with methionine or homocysteine impairs FMD, but it remains unproven that this effect is mediated directly by homocysteine. In addition, there is no clear consensus as to a mechanisms by which homocysteine would induce endothelial dysfunction. Folate administration lowers plasma homocysteine and enhances FMD. However, the effect of folate only appears to occur at high doses and with a time course that would indicate that it is acting by a mechanism independent of homocysteine lowering. It is possible that folate, in pharmacological doses, may enhance the NO activity by influencing NO-tetrahydrobiopterin interactions. These studies provide some insights and raise intriguing questions concerning the relationship between homocysteine, folate, and endothelial function. However, changes in FMD may not translate into vascular endpoints, and the outcomes of clinical intervention trials with different doses of folic acid are awaited with interest.

REFERENCES

  • 1 Busse R, Fleming I. Endothelial dysfunction in atherosclerosis.  J Vasc Res. 1996;  33 181-194
  • 2 Drexler H, Hornig B. Endothelial dysfunction in human disease.  J Mol Cell Cardiol. 1999;  31 51-60
  • 3 Corretti M C, Anderson T J, Benjamin E J et al.. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force.  J Am Coll Cardiol. 2002;  39 257-265
  • 4 Schachinger V, Britten M B, Zeiher A M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease.  Circulation. 2000;  101 1899-1906
  • 5 Suwaidi J A, Hamasaki S, Higano S T, Nishimura R A, Holmes Jr D R, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction.  Circulation. 2000;  101 948-954
  • 6 Gokce N, Keaney Jr J F, Hunter L M. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease.  J Am Coll Cardiol. 2003;  41 1769-1775
  • 7 Halcox J P, Schenke W H, Zalos G. Prognostic value of coronary vascular endothelial dysfunction.  Circulation. 2002;  106 653-658
  • 8 Esper R J, Machado R, Vilarino J et al.. Endothelium-dependent responses in patients with hypercholesterolemic coronary artery disease under the effects of simvastatin and enalapril, either separately or combined.  Am Heart J. 2000;  140 684-689
  • 9 Finta K M, Fischer M J, Lee L, Gordon D, Pitt B, Webb R C. Ramipril prevents impaired endothelium-dependent relaxation in arteries from rabbits fed an atherogenic diet.  Atherosclerosis. 1993;  100 149-156
  • 10 Farquharson C A, Struthers A D. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure.  Circulation. 2000;  101 594-597
  • 11 Goodfellow J, Bellamy M F, Ramsey M W, Jones C J, Lewis M J. Dietary supplementation with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia.  J Am Coll Cardiol. 2000;  35 265-270
  • 12 Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S).  Lancet. 1994;  344 1383-1389
  • 13 Effect of ramipril on martality and morvidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study investigators.  Lancet. 1993;  342 821-828
  • 14 Pitt B, Zannad F, Remme W J et al.. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators.  N Engl J Med. 1999;  341 709-717
  • 15 Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell Infarto miocardico.  Lancet. 1999;  354 447-455
  • 16 McCully K S. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis.  Am J Pathol. 1969;  56 111-128
  • 17 Celermajer D S, Sorensen K, Ryalls M et al.. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents.  J Am Coll Cardiol. 1993;  22 854-858
  • 18 Pullin C H, Bonham J R, McDowell I F et al.. Vitamin C therapy ameliorates vascular endothelial dysfunction in treated patients with homocystinuria.  J Inherit Metab Dis. 2002;  25 107-118
  • 19 Yap S, Boers G H, Wilcken B et al.. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study.  Arterioscler Thromb Vasc Biol. 2001;  21 2080-2085
  • 20 Tawakol A, Omland T, Gerhard M, Wu J T, Creager M A. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans.  Circulation. 1997;  95 1119-1121
  • 21 Woo K S, Chook P, Lolin Y I et al.. Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans.  Circulation. 1997;  6 2542-2544
  • 22 Bellamy M F. Homocysteine and endothelial function. MD thesis, University of London; 2000
  • 23 Woodman R J, Celermajer D E, Thompson P L, Hung J. Folic acid does not improve endothelial function in healthy hyperhomocysteinaemic subjects.  Clin Sci. 2004;  106 353-358
  • 24 Klerk M, Verhoef P, Clarke R, Blom H J, Kok F J, Schouten E G. MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis.  JAMA. 2002;  288 2023-2031
  • 25 Pullin C H, Ashfield-Watt P A, Burr M L et al.. Optimization of dietary folate or low-dose folic acid supplements lower homocysteine but do not enhance endothelial function in healthy adults, irrespective of the methylenetetrahydrofolate reductase (C677T) genotype.  J Am Coll Cardiol. 2001;  38 1799-1805
  • 26 Butler R, Morris A D, Struthers A D. The T allele of the C(677)T 5,10-methylenetetrahydrofolate reductase (MTHFR) gene polymorphism may protect endothelial function in young, normal subjects.  Arterioscler Thromb Vasc Biol. 2002;  22 193-194
  • 27 Bellamy M F, McDowell I F, Ramsey M W et al.. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults.  Circulation. 1998;  98 1848-1852
  • 28 Chambers J C, McGregor A, Jean-Marie J, Obeid O A, Kooner J S. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy.  Circulation. 1999;  99 1156-1160
  • 29 Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T. Endothelial dysfunction by acute hyperhomocyst(e)inaemia: restoration by folic acid.  Clin Sci. 1999;  96 235-239
  • 30 Kanani P M, Sinkey C A, Browning R L, Allaman M, Knapp H R, Haynes W G. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans.  Circulation. 1999;  100 1161-1168
  • 31 Chao C L, Kuo T L, Lee Y T. Effects of methionine-induced hyperhomocysteinemia on endothelium-dependent vasodilation and oxidative status in healthy adults.  Circulation. 2000;  101 485-490
  • 32 Nappo F, De Rosa N, Marfella R et al.. Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins.  JAMA. 1999;  281 2113-2118
  • 33 Hanratty C G, McAuley D F, McGurk C, Young I S, Johnston G D. Homocysteine and endothelial vascular function.  Lancet. 1998;  351 1288-1289
  • 34 Chambers J C, Ueland P M, Wright M, Dore C J, Refsum H, Kooner J S. Investigation of relationship between reduced, oxidized, and protein-bound homocysteine and vascular endothelial function in healthy human subjects.  Circ Res. 2001;  89 187-192
  • 35 Boger R H, Lentz S R, Bode-Boger S M, Knapp H R, Haynes W G. Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans.  Clin Sci. 2001;  100 161-167
  • 36 Stuhlinger M C, Oka R K, Graf E E et al.. Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine.  Circulation. 2003;  108 933-938
  • 37 Wanby P, Brattstrom L, Brudin L, Hultberg B, Teerlink T. Asymmetric dimethylarginine and total homocysteine in plasma after oral methionine loading.  Scand J Clin Lab Invest. 2003;  63 347-353
  • 38 Doshi S N, McDowell I F, Goodfellow J et al.. Relationship between S-adenosylmethionine, S-adenosylhomocysteine, asymmetric dimethylarginine and endothelial function in healthy human subjects during experimental hyper and hypo-homocysteinaemia.  Metabolism. 2005;  54 351-360
  • 39 Hanratty C, McGrath L, McAuley D, Young I, Johnston D. The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia.  BMC Cardiovasc Disord. 2001;  1 1 , Epub
  • 40 Chao C L, Chien K L, Lee Y T. Effect of short-term vitamin (folic acid, vitamins B6 and B12) administration on endothelial dysfunction induced by post-methionine load hyperhomocysteinemia.  Am J Cardiol. 1999;  84 1359-1361
  • 41 Zheng H, Dimayuga C, Hudailhed A, Katz S. Effect of dexrazoxane on homocysteine-induced endothelial dysfunction in normal subjects.  Aterioscler Thromb Vasc Biol. 2002;  22 E15-E18
  • 42 Moat S J, Lang D, McDowell I FW et al.. Folate, endothelial function and cardiovascular disease. Invited review.  J Nutr Biochem. 2004;  15 64-79
  • 43 Bellamy M F, McDowell I F, Ramsey M W, Brownlee M, Newcombe R G, Lewis M J. Oral folate enhances endothelial function in hyperhomocysteinaemic subjects.  Eur J Clin Invest. 1999;  29 659-662
  • 44 Woo K S, Chook P, Lolin Y I, Sanderson J E, Metreweli C, Celermajer D S. Folic acid improves arterial endothelial function in adults with hyperhomocystinemia.  J Am Coll Cardiol. 1999;  34 2002-2006
  • 45 Gori T, Burstein J M, Ahmed S et al.. Folic acid prevents nitroglycerin-induced nitric oxide synthase dysfunction and nitrate tolerance: a human in vivo study.  Circulation. 2001;  104 1119-1123
  • 46 Wilmink H W, Stroes E S, Erkelens W D et al.. Influence of folic acid on postprandial endothelial dysfunction.  Arterioscler Thromb Vasc Biol. 2000;  20 185-188
  • 47 van Guldener C, Janssen M J, Lambert J et al.. No change in impaired endothelial function after long-term folic acid therapy of hyperhomocysteinaemia in haemodialysis patients.  Nephrol Dial Transplant. 1998;  13 106-112
  • 48 Thambyrajah J, Landray M J, McGlynn F J, Jones H J, Wheeler D C, Townend J N. Does folic acid decrease plasma homocysteine and improve endothelial function in patients with predialysis renal failure?.  Circulation. 2000;  102 871-875
  • 49 Doshi S N, McDowell I F, Moat S J et al.. Folate improves endothelial function in coronary artery disease: an effect mediated by reduction of intracellular superoxide?.  Arterioscler Thromb Vasc Biol. 2001;  21 1196-1202
  • 50 Doshi S N, McDowell I F, Moat S J et al.. Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering.  Circulation. 2002;  105 22-26
  • 51 Title L M, Cummings P M, Giddens K, Genest Jr J J, Nassar B A. Effect of folic acid and antioxidant vitamins on endothelial dysfunction in patients with coronary artery disease.  J Am Coll Cardiol. 2000;  36 758-765
  • 52 Chambers J C, Ueland P M, Obeid O A, Wrigley J, Refsum H, Kooner J S. Improved vascular endothelial function after oral B vitamins: An effect mediated through reduced concentrations of free plasma homocysteine.  Circulation. 2000;  102 2479-2483
  • 53 Madhavan A, Moat S J, McDowell I FW, Lewis M J, Goodfellow J, Lang D. High- but not low-dose folic acid improves endothelial function in coronary artery disease.  J Am Coll Cardiol. 2004;  43(517A) 159-1186
  • 54 Verhaar M C, Wever R M, Kastelein J J, van Dam T, Koomans H A, Rabelink T J. 5-methyltetrahydrofolate, the active form of folic acid restores endothelial dysfunction in familial hypercholesterolaemia.  Circulation. 1998;  97 237-241
  • 55 Nakano E, Higgins J A. Powers HJ. Folate protects against oxidative modification of human LDL.  Br J Nutr. 2001;  86 637-639
  • 56 Vasquez-Vivar J, Martasek P, Whitsett J, Joseph J, Kalyanaraman B. The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study.  Biochem J. 2002;  362 733-739
  • 57 Stroes E, Kastelein J, Cosentino F et al.. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia.  J Clin Invest. 1997;  99 41-46
  • 58 Maier W, Cosentino F, Lutolf R B et al.. Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease.  J Cardiovasc Pharmacol. 2000;  35 173-178
  • 59 Stroes E S, van Faassen E E, Yo M et al.. Folic acid reverts dysfunction of endothelial nitric oxide synthase.  Circ Res. 2000;  86 1129-1134
  • 60 Hyndman M E, Verma S, Rosenfeld R J, Anderson T J, Parsons H G. Interaction of 5-methyltetrahydrofolate and tetrahydrobiopterin on endothelial function.  Am J Physiol Heart Circ Physiol. 2002;  282 H2167-H2172
  • 61 Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner E. L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin.  J Biol Chem. 2001;  276 40-47
  • 62 Baker F, Picton D, Blackwood S et al.. Blinded comparison of folic acid and placebo in patients with ischaemic heart disease: an outcome trial.  Circulation. 2002;  106(Supplement 1) 741
  • 63 Liem A, Reynierse-Buitenwerf G H, Zwinderman A H, Juema J W, van Veldhuisen D J. Secondary prevention with folic acid: effects on clinical outcomes.  J Am Coll Cardiol. 2003;  41 2105-2113
  • 64 Toole J, Malinow M R, Chambless L E et al.. Lowering homocysteine in patients with ischaemic stroke to prevent recurrent stroke, myocardial infarction, and death. The vitamin Intervention for Stroke Prevention (VISP) Randomised Controlled Study.  JAMA. 2004;  291 565-575
  • 65 Lowering blood homcysteine with folic acid based supplements: meta-analysis of randomised trials. Homocysteine Lowering Trialists' Collaboration.  BMJ. 1998;  316 894-898
  • 66 Doshi S N, Moat S J, McDowell I FW, Lewis M J, Goodfellow J. Lowering plasma homocysteine with folic acid in cardiovascular disease: what will the trials tell us?.  Atherosclerosis. 2002;  165 1-3

Stuart J MoatPh.D. 

Department of Medical Biochemistry and Immunology, Wales College of Medicine, Cardiff University and the University Hospital of Wales

Heath Park, Cardiff, UK, CF14 4XW