References
-
For reviews, see
-
1a
Mead KT.
Brewer BN.
Curr. Org. Chem.
2003,
7:
227
-
1b
Vaillancourt V.
Pratt NE.
Perron F.
Albizati KF. In The Total Synthesis of Natural Products
Vol. 8:
John Wiley & Sons;
New York:
1992.
p.533
-
1c
Perron F.
Albizati KF.
Chem. Rev.
1989,
89:
1617
- 2
Shiozaki M.
Carbohydr. Res.
2002,
337:
2077 ; and references cited therein
-
3a
Gasch C.
Pradera MA.
Salameh BAB.
Molina JL.
Fuentes J.
Tetrahedron: Asymmetry
2001,
12:
1267
-
3b
Chatgilialoglu C.
Gimisis T.
Spada GP.
Chem.-Eur. J.
1999,
5:
2866
-
3c
Kittaka A.
Asakura T.
Kuse T.
Tanaka H.
Yamada N.
Nakamura KT.
Miyasaka T.
J. Org. Chem.
1999,
64:
7081
-
3d
Kittaka A.
Tanaka H.
Odanaka Y.
Ohnuki K.
Yamaguchi K.
Miyasaka T.
J. Org. Chem.
1994,
59:
3636
-
4a
Nicolaou KC.
Li Y.
Uesaka N.
Koftis TV.
Vyskocil S.
Ling T.
Govindasamy M.
Qian W.
Bernal F.
Chen DY.-K.
Angew. Chem. Int. Ed.
2003,
42:
3643
-
4b
Sasaki M.
Iwamuro Y.
Nemoto J.
Oikawa M.
Tetrahedron Lett.
2003,
44:
6199
-
4c
Nicolaou KC.
Pihko PN.
Diedrichs N.
Zou N.
Bernal F.
Angew. Chem. Int. Ed.
2001,
40:
1262
-
4d
Ofuji K.
Satake M.
McMahon T.
James KJ.
Naoki H.
Oshima Y.
Yasumoto T.
Biosci., Biotechnol., Biochem.
2001,
65:
740
-
4e
Forsyth CJ.
Hao J.
Aiguade J.
Angew. Chem. Int. Ed.
2001,
40:
3663
-
4f
Aiguade J.
Hao J.
Forsyth CJ.
Tetrahedron Lett.
2001,
42:
817
-
4g
Satake M.
Ofuji K.
Naoki H.
James KL.
Furey A.
McMahon T.
Silke J.
Yasumoto T.
J. Am. Chem. Soc.
1998,
120:
9967
-
5a
Lindel T.
Organic Synthesis Highlights V
Schmalz HG.
Wirth T.
Wiley;
New York:
2003.
p.350
-
5b
Paquette LA.
Duan M.
Konetzki I.
Kempmann C.
J. Am. Chem. Soc.
2002,
124:
4257
-
5c
Duan M.
Paquette LA.
Angew. Chem. Int. Ed.
2001,
40:
3632
-
5d
Nicolaou KC.
Murphy F.
Barluenga S.
Ohshima T.
Wei H.-X.
Xu J.
Gray DLF.
Baudoin O.
J. Am. Chem. Soc.
2000,
122:
3830
-
5e
Nicolaou KC.
Xu J.
Murphy F.
Barluenga S.
Baudoin O.
Wei H.-X.
Gray DLF.
Ohshima T.
Angew. Chem. Int. Ed.
1999,
38:
2447
-
5f
Fehr T.
Kallen J.
Oberer L.
Sanglier JJ.
Schilling W.
J. Antibiot.
1999,
52:
474
-
6a
Driedger DR.
Sporns P.
Food Agric. Immunol.
2001,
13:
33
-
6b
Weissenberg M.
Phytochemistry
2001,
58:
501
-
6c
Laurila J.
Laakso I.
Väänänen T.
Kuronen P.
Huopalahti R.
Pehu E.
J. Agric. Food Chem.
1999,
47:
2738
-
6d
Ripperger H.
Schreiber K. In
The Alkaloids
Vol. XIX:
Rodrigo RGA.
Academic Press;
New York:
1981.
-
For syntheses of other spiroaminoketals, see:
-
7a
Freire R.
Martin A.
Perez-Martin I.
Suarez E.
Tetrahedron Lett.
2002,
43:
5113
-
7b
Izquierdo I.
Plaza MT.
Robles R.
Rodriguez C.
Ramirez A.
Mota AJ.
Eur. J. Org. Chem.
1999,
1269
-
7c
Aamlid KH.
Hough L.
Richardson AC.
Carbohydr. Res.
1990,
202:
117
-
7d
Alanine AID.
Fishwick CWG.
Szantay CJ.
Tetrahedron Lett.
1989,
30:
6573
-
8a
Tursun A.
Canet I.
Aboab B.
Sinibaldi M.-E.
Tetrahedron Lett.
2005,
46:
2291
-
For the synthesis of others spiroacetals using alkylation of hydrazones, see:
-
8b
Dias LC.
de Oliveira LG.
Org. Lett.
2004,
6:
2587
-
8c
Crimmins MT.
Rafferty SW.
Tetrahedron Lett.
1996,
37:
5649
-
8d
Schreiber SL.
Wang Z.
J. Am. Chem. Soc.
1985,
107:
5303
-
9a
Markidis T.
Kokotos G.
J. Org. Chem.
2001,
66:
1919
-
9b
Kadota I.
Saya S.
Yamamoto Y.
Heterocycles
1997,
46:
335
-
Conformational analysis was performed using the Monte-Carlo Multiple Minimum Method with MM3:
-
14a
Chang G.
Wayne C.
Guida W.
Still WC.
J. Am. Chem. Soc.
1989,
111:
4379
-
14b
Allinger NL.
Yuh YH.
Lii JH.
J. Am. Chem. Soc.
1989,
111:
8551
-
14c Force field Macromodel 7.0 program was used: Macromodel 7.0
Schroedinger Inc.;
Portland, OR:
2001.
-
14d Quantum semi-empirical calculations AM1, were carried out: Dewar MJS.
Zoebisch EG.
Healy EF.
Stewart JJP.
J. Am. Chem. Soc.
1985,
107:
3902
-
14e Geometries of global minima of both 6-S and 6-R 1a isomers were carried out using AMPAC 7.0: Ampac 7.0
Semichem;
USA:
2000.
10 Selected data for (S)-4: yellow solid; mp 57 °C; [α]D
25 -17.3 (c 0.15, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.07 (s, 9 H), 1.44 (s, 9 H), 2.10 (m, 2 H), 3.13 (m, 2 H), 3.60 (dd, J = 10.0, 2.0 Hz, 1 H), 3.69 (dd, J = 10.0, 3.0 Hz, 1 H), 3.75 (m, 1 H), 4.70 (d, J = 8.0 Hz, 1 H), 7.41 (m, 6 H), 7.62 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 1.0, 18.9, 26.6, 28.0, 36.4, 52.5, 64.9, 79.0, 127.5, 129.5, 132.6, 135.1, 155.1. HRMS: m/z calcd for C25H36INO3Si [M + Na+]: 576.1407. Found: 576.1421.
11 Selected data for 2: pale yellow oil; [α]D
25 -9.3 (c 0.80, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.05 (s, 9 H), 1.33 (s, 3 H), 1.39 (s, 3 H), 1.43 (s, 9 H), 1.40-1.72 (m, 8 H), 2.39 (m, 2 H), 2.42 (t, J = 6.5 Hz, 2 H), 3.49 (t, J = 7.0 Hz, 1 H), 3.57 (dd, J = 9.0, 3.0 Hz, 1 H), 3.65 (m, 2 H), 4.02 (t, J = 7.0 Hz, 1 H), 4.04 (m, 1 H), 4.65 (d, J = 8.5 Hz, 1 H), 7.39 (m, 6 H), 7.62 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 19.3, 19.9, 20.0, 25.7, 26.8, 26.9, 28.4, 31.2, 32.9, 42.3, 51.4, 65.6, 69.3, 75.7, 79.0, 108.7, 127.7, 129.7, 133.2, 135.5, 155.6, 210.3. HRMS: m/z calcd for C35H53NO6Si [M + Na+]: 634.3540. Found: 634.3549.
12 Selected data for 1a: foam; [α]D
25 -29.2 (c 0.88, CHCl3). 1H NMR (400 MHz, C6D6): δ = 0.98 (m, 1 H), 1.12 (s, 9 H), 1.33 (m, 2 H), 1.46 (s, 9 H), 1.46 (m, 1 H), 1.49 (m, 2 H), 1.58 (m, 3 H), 1.74 (m, 3 H), 3.48 (dd, J = 10.0, 4.0 Hz, 1 H), 3.55 (t, J = 6.5 Hz, 1 H), 3.59 (m, 2 H), 3.87 (m, 1 H), 4.08 (m, 1 H), 4.47 (d, J = 9.0 Hz, 1 H, OH), 7.23 (m, 6 H), 7.73 (m, 4 H). 13C NMR (100 MHz, C6D6): δ = 17.3, 19.5, 20.1, 27.1, 28.6, 28.7, 32.3, 34.4, 38.0, 52.3, 66.3, 69.0, 74.7, 78.4, 108.8, 128.1, 130.0, 133.9, 136.0, 155.6. HRMS: m/z calcd for C32H47NO5Si [M + Na+]: 576.3121. Found: 576. 3134.
13 Selected data for 1b: white solid; mp 86 °C. [α]D
25 -41.8 (c 1.00, CHCl3). 1H NMR (400 MHz, C6D6): δ = 0.97 (m, 1 H), 1.21 (m, 1 H), 1.35 (m, 2 H), 1.43 (s, 9 H), 1.49 (m, 2 H), 1.56 (m, 3 H), 1.69 (m, 3 H), 2.55 (br s, 1 H, OH), 3.34 (m, 1 H), 3.44 (m, 1 H), 3.56 (m, 2 H), 3.68 (m, 1 H), 4.08 (m, 1 H), 4.60 (d, J = 7.5 Hz, 1 H, OH). 13C NMR (100 MHz, C6D6): δ = 17.3, 20.1, 28.5, 28.6, 31.8, 34.3, 37.8, 53.1, 65.7, 69.0, 74.7, 78.8, 108.8, 156.5. HRMS: m/z calcd for C16H29NO5 [M + Na+]: 338.1943. Found: 338.1938.