ABSTRACT
The biliary epithelium provides a physical barrier to ascending infection from the gastrointestinal tract and is also involved in actively regulating the immune response to invading pathogens. Cholangiocytes secrete chemokines and express adhesion molecules that attract effector leukocytes and promote the clearance of infected cells. However in the context of transplantation these properties make cholangiocytes targets for allogeneic cytotoxic T cells, and both graft-versus-host disease and liver allograft rejection are characterized by destruction of intrahepatic bile ducts by infiltrating lymphocytes. The mechanisms of cholangiocyte killing are complex but involve activation of apoptosis by the granzyme/perforin pathway and by activation of death receptors belonging to the tumor necrosis factor (TNF) receptor superfamily, most notably Fas. Fas-dependent apoptosis is carefully regulated by cooperative interactions with other TNF receptors, particularly CD40, that act to amplify autocrine and paracrine expression of Fas ligand and Fas-mediated killing. A better understanding of the molecular control of these processes may explain why bile duct loss continues despite conventional immunosuppression in the vanishing bile duct syndromes, and lead to novel therapies aimed at switching off the chronic inflammatory response and protecting cholangiocytes from apoptosis.
KEYWORDS
Liver allograft rejection - GVHD - apoptosis - vanishing bile duct syndrome - Fas - CD40
REFERENCES
1
Burt A D.
Primary biliary cirrhosis and other ductopenic diseases.
Clin Liver Dis.
2002;
6
363-380
2
Hubscher S G.
Histological findings in liver allograft rejection-new insights into the pathogenesis of hepatocellular damage in liver allografts.
Histopathology.
1991;
18
377-383
3
Hubscher S G.
Pathology of liver allograft rejection.
Transpl Immunol.
1994;
2
118-123
4
Scheuer P J.
Ludwig Symposium on biliary disorders-part II. Pathologic features and evolution of primary biliary cirrhosis and primary sclerosing cholangitis.
Mayo Clin Proc.
1998;
73
179-183
5
Kim W R, Ludwig J, Lindor K D.
Variant forms of cholestatic diseases involving small bile ducts in adults.
Am J Gastroenterol.
2000;
95
1130-1138
6
Celli A, Que F G.
Dysregulation of apoptosis in the cholangiopathies and cholangiocarcinoma.
Semin Liver Dis.
1998;
18
177-185
7
Chen X M, Gores G J, Paya C V, LaRusso N F.
Cryptosporidium parvum induces apoptosis in biliary epithelia by a Fas/Fas ligand-dependent mechanism.
Am J Physiol.
1999;
277
G599-G608
8
Patel T, Gores G J.
Apoptosis in liver transplantation: a mechanism contributing to immune modulation, preservation injury, neoplasia, and viral disease.
Liver Transpl Surg.
1998;
4
42-50
9
Vierling J M.
Animal models for primary sclerosing cholangitis.
Best Pract Res Clin Gastroenterol.
2001;
15
591-610
10
Vierling J M.
Autoimmune cholangiopathy.
Clin Liver Dis.
1999;
3
571-584
11
Vierling J M.
Immunology of acute and chronic hepatic allograft rejection.
Liver Transpl Surg.
1999;
5(4 suppl 1)
S1-S20
12
Reddy P.
Pathophysiology of acute graft-versus-host disease.
Hematol Oncol.
2003;
21
149-161
13
Reddy P, Ferrara J L.
Immunobiology of acute graft-versus-host disease.
Blood Rev.
2003;
17
187-194
14
Jamieson N V, Joysey V, Friend P J et al..
Graft-versus-host disease in solid organ transplantation.
Transpl Int.
1991;
4
67-71
15
McDonald G B, Shulman H M, Sullivan K M, Spencer G D.
Intestinal and hepatic complications of human bone marrow transplantation. Part I.
Gastroenterology.
1986;
90
460-477
16
Soiffer R J, Dear K, Rabinowe S N et al..
Hepatic dysfunction following T-cell-depleted allogeneic bone marrow transplantation.
Transplantation.
1991;
52
1014-1019
17
McDonald G B, Shulman H M, Sullivan K M, Spencer G D.
Intestinal and hepatic complications of human bone marrow transplantation. Part II.
Gastroenterology.
1986;
90
770-784
18
Diamond D J, Chang K L, Jenkins K A, Forman S J.
Immunohistochemical analysis of T cell phenotypes in patients with graft-versus-host disease following allogeneic bone marrow transplantation.
Transplantation.
1995;
59
1436-1444
19
Tanaka M, Umihara J, Shimmoto K et al..
The pathogenesis of graft-versus-host reaction in the intrahepatic bile duct. An immunohistochemical study.
Acta Pathol Jpn.
1989;
39
648-655
20
Hubscher S G, Adams D H, Buckels J A, McMaster P, Neuberger J, Elias E.
Massive haemorrhagic necrosis of the liver after liver transplantation.
J Clin Pathol.
1989;
42
360-370
21
Neuberger J, Adams D H.
What is the significance of acute liver allograft rejection?.
J Hepatol.
1998;
29
143-150
22
Vierling J M, Fennell Jr R H.
Histopathology of early and late human hepatic allograft rejection: evidence of progressive destruction of interlobular bile ducts.
Hepatology.
1985;
5
1076-1082
23
Dousset B, Hubscher S G, Padbury R T et al..
Acute liver allograft rejection-is treatment always necessary?.
Transplantation.
1993;
55
529-534
24
Goddard S, Adams D H.
New approaches to immunosuppression in liver transplantation.
J Gastroenterol Hepatol.
2002;
17
116-126
25
Neil D A, Adams D H, Gunson B, Hubscher S G.
Is chronic rejection of liver transplants different from graft arteriosclerosis of kidney and heart transplants?.
Transplant Proc.
1997;
29
2539-2540
26
Freese D K, Snover D C, Sharp H L, Gross C R, Savick S K, Payne W D.
Chronic rejection after liver transplantation: a study of clinical, histopathological and immunological features.
Hepatology.
1991;
13
882-891
27
Snover D C, Freese D K, Bloomer J R, Sharp H L, Ascher N L.
An analysis of histological prognostic features of liver allograft rejection based on 270 serial biopsies.
Transplant Proc.
1987;
19(1 pt 3)
2457-2458
28
Lunz III J G, Contrucci S, Ruppert K et al..
Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21(WAF1/Cip1) as a disease marker and the influence of immunosuppressive drugs.
Am J Pathol.
2001;
158
1379-1390
29
Matsumoto Y, McCaughan G W, Painter D M, Bishop G A.
Evidence that portal tract microvascular destruction precedes bile- duct loss in human liver allograft-rejection.
Transplantation.
1993;
56
69-75
30
Patel T, Steer C J, Gores G J.
Apoptosis and the liver: a mechanism of disease, growth regulation, and carcinogenesis.
Hepatology.
1999;
30
811-815
31
Fausto N.
Liver regeneration.
J Hepatol.
2000;
32(suppl 1)
19-31
32
Palmer J M, Kirby J A, Jones D E.
The immunology of primary biliary cirrhosis: the end of the beginning?.
Clin Exp Immunol.
2002;
129
191-197
33
Kita H, Mackay I R, Van de Water J, Gershwin M E.
The lymphoid liver: considerations on pathways to autoimmune injury.
Gastroenterology.
2001;
120
1485-1501
34
Gershwin M E, Ansari A A, Mackay I R et al..
Primary biliary cirrhosis: an orchestrated immune response against epithelial cells.
Immunol Rev.
2000;
174
210-225
35
Adams D H, Afford S C.
The role of cholangiocytes in the development of chronic inflammatory liver disease.
Front Biosci.
2002;
7
e276-e285
36
Vierling J M.
Immunological mechanisms of hepatic allograft rejection.
Semin Liver Dis.
1992;
12
16-27
37
Message S D, Johnston S L.
Host defense function of the airway epithelium in health and disease: clinical background.
J Leukoc Biol.
2004;
75
5-17
38
Mahida Y R, Cunliffe R N.
Defensins and mucosal protection.
Novartis Found Symp.
2004;
263
71-77
39
Nozaki I, Lunz III J G, Specht S et al..
Regulation and function of trefoil factor family 3 expression in the biliary tree.
Am J Pathol.
2004;
165
1907-1920
40
Reynoso-Paz S, Coppel R L, Mackay I R, Bass N M, Ansari A A, Gershwin M E.
The immunobiology of bile and biliary epithelium.
Hepatology.
1999;
30
351-357
41
Kaetzel C S, Robinson J K, Chintalacharuvu K R, Vaerman J P, Lamm M E.
The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA.
Proc Natl Acad Sci USA.
1991;
88
8796-8800
42
Lamm M E.
Current concepts in mucosal immunity. IV. How epithelial transport of IgA antibodies relates to host defense.
Am J Physiol.
1998;
274(4 pt 1)
G614-G617
43
Coulomb-L’Hermin A, Amara A, Schiff C et al..
Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells.
Proc Natl Acad Sci USA.
1999;
96
8585-8590
44
Terada R, Yamamoto K, Hakoda T et al..
Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases.
Lab Invest.
2003;
83
665-672
45
Morland C M, Fear J, McNab G, Joplin R, Adams D H.
Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro.
Proc Assoc Am Physicians.
1997;
109
372-382
46
Loffreda S, Rai R, Yang S Q, Lin H Z, Diehl A M.
Bile ducts and portal and central veins are major producers of tumor necrosis factor alpha in regenerating rat liver.
Gastroenterology.
1997;
112
2089-2098
47
Dienes H P, Lohse A W, Gerken G et al..
Bile duct epithelia as target cells in primary biliary cirrhosis and primary sclerosing cholangitis.
Virchows Arch.
1997;
431
119-124
48
Leon M P, Bassendine M F, Gibbs P, Thick M, Kirby J A.
Immunogenicity of biliary epithelium: study of the adhesive interaction with lymphocytes.
Gastroenterology.
1997;
112
968-977
49
Saxena R, Hytiroglou P, Thung S N, Theise N D.
Destruction of canals of Hering in primary biliary cirrhosis.
Hum Pathol.
2002;
33
983-988
50
Woolf G M, Vierling J M.
Disappearing intrahepatic bile ducts: the syndromes and their mechanisms.
Semin Liver Dis.
1993;
3
261-275
51
Banchereau J, Steinman R M.
Dendritic cells and the control of immunity.
Nature.
1998;
392
245-252
52
Reis e Sousa C.
Dendritic cells as sensors of infection.
Immunity.
2001;
14
495-498
53
Muller W A, Randolph G J.
Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes.
J Leukoc Biol.
1999;
66
698-704
54
Kudo S, Matsuno K, Ezaki T, Ogawa M.
A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation.
J Exp Med.
1997;
185
777-784
55
Matsuno K, Kudo S, Ezaki T.
The liver sinusoids as a specialized site for blood-lymph translocation of rat dendritic cells.
Adv Exp Med Biol.
1997;
417
77-81
56
Uwatoku R, Suematsu M, Ezaki T et al..
Kupffer cell-mediated recruitment of rat dendritic cells to the liver: roles of N-acetylgalactosamine-specific sugar receptors.
Gastroenterology.
2001;
121
1460-1472
57
Mempel T R, Henrickson S E, von Andrian U H.
T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases.
Nature.
2004;
427
154-159
58
Cremer I, Dieu-Nosjean M C, Marechal S et al..
Long-lived immature dendritic cells mediated by TRANCE-RANK interaction.
Blood.
2002;
100
3646-3655
59
Goddard S, Youster J, Morgan E, Adams D H.
Interleukin-10 secretion differentiates dendritic cells from human liver and skin.
Am J Pathol.
2004;
164
511-519
60
Csencsits K, Wood S C, Lu G et al..
Graft rejection mediated by CD4(+) T cells via indirect recognition of alloantigen is associated with a dominant Th2 response.
Eur J Immunol.
2005;
35
843-851
61
Stanford R E, Ahmed S, Hodson M, Banner N R, Rose M L.
A role for indirect allorecognition in lung transplant recipients with obliterative bronchiolitis.
Am J Transplant.
2003;
3
736-742
62
Thomson A W, Lu L.
Dendritic cells as regulators of immune reactivity: implications for transplantation.
Transplantation.
1999;
68
1-8
63
Howell C D, Yoder T, Claman H N, Vierling J M.
Hepatic homing of mononuclear inflammatory cells isolated during murine chronic graft-vs-host disease.
J Immunol.
1989;
143
476-483
64
Vierling J M, Howell C D.
Disappearing bile ducts: immunologic mechanisms.
Hosp Pract (Off Ed).
1990;
25
141-150
65
McCaughan G W, Davies J W, Waugh J A.
A quantitative analysis of T-lymphocyte populations in human liver allografts undergoing rejection.
Hepatology.
1990;
12
1305-1313
66
McCaughan G W, Bishop G A.
Atherosclerosis of the liver allograft.
J Hepatol.
1997;
27
592-598
67
Kim Y M, Sachs T, Asavaroengchai W, Bronson R, Sykes M.
Graft-versus-host disease can be separated from graft-versus-lymphoma effects by control of lymphocyte trafficking with FTY720.
J Clin Invest.
2003;
111
659-669
68
Masubuchi Y, Kawaguchi T, Ohtsuki M et al..
FTY720, a novel immunosuppressant, possessing unique mechanisms. IV. Prevention of graft versus host reactions in rats.
Transplant Proc.
1996;
28
1064-1065
69
Azhipa O, Kimizuka K, Nakao A et al..
Comparative analysis of the fate of donor dendritic cells and B cells and their influence on alloreactive T cell responses under tacrolimus immunosuppression.
Clin Immunol.
2005;
114
199-209
70
Morelli A E, Thomson A W.
Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction.
Immunol Rev.
2003;
196
125-146
71
McCaughan G W, Gorrell M D, Bishop G A et al..
Molecular pathogenesis of liver disease: an approach to hepatic inflammation, cirrhosis and liver transplant tolerance.
Immunol Rev.
2000;
174
172-191
72
Lalor P F, Shields P, Grant A, Adams D H.
Recruitment of lymphocytes to the human liver.
Immunol Cell Biol.
2002;
80
52-64
73
Campbell J J, Butcher E C.
Chemokines in tissue-specific and microenvironment-specific lymphocyte homing.
Curr Opin Immunol.
2000;
12
336-341
74
von Andrian U H, Mackay C R.
T-cell function and migration. Two sides of the same coin.
N Engl J Med.
2000;
343
1020-1034
75
Rot A, von Andrian U H.
Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells.
Annu Rev Immunol.
2004;
22
891-928
76
Gretz J E, Kaldjian E P, Anderson A O, Shaw S.
Commentary-sophisticated strategies for information encounter in the lymph-node - the reticular network as a conduit of soluble information and a highway for cell traffic.
J Immunol.
1996;
157
495-499
77
Tanaka Y, Adams D H, Hubscher S, Hirano H, Siebenlist U, Shaw S.
T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1β.
Nature.
1993;
361
79-82
78
Middleton J, Patterson A M, Gardner L, Schmutz C, Ashton B A.
Leukocyte extravasation: chemokine transport and presentation by the endothelium.
Blood.
2002;
100
3853-3860
79
Klugewitz K, Adams D H, Emoto M, Eulenburg K, Hamann A.
The composition of intrahepatic lymphocytes: shaped by selective recruitment?.
Trends Immunol.
2004;
25
590-594
80
Crispe I N.
Hepatic T cells and liver tolerance.
Nat Rev Immunol.
2003;
3
51-62
81
Adams D H, Hubscher S, Fear J, Johnston J, Shaw S, Afford S.
Hepatic expression of macrophage inflammatory protein-1 alpha and macrophage inflammatory protein-1 beta after liver transplantation.
Transplantation.
1996;
61
817-825
82
Goddard S, Williams A, Morland C et al..
Differential expression of chemokines and chemokine receptors shapes the inflammatory response in rejecting human liver transplants.
Transplantation.
2001;
72
1957-1967
83
Steinhoff G, Behrend M, Wonigeit K.
Expression of adhesion molecules on lymphocytes/monocytes and hepatocytes in human liver grafts.
Hum Immunol.
1990;
28
123-127
84
Steinhoff G, Behrend M, Schrader B, Pichlmayr R.
Intercellular immune adhesion molecules in human liver transplants: overview on expression patterns of leukocyte receptor and ligand molecules.
Hepatology.
1993;
18
440-453
85
Mehal W Z, Juedes A E, Crispe I N.
Selective retention of activated CD8+ T cells by the normal liver.
J Immunol.
1999;
163
3202-3210
86
Hamann A, Klugewitz K, Austrup F, Jablonski-Westrich D.
Activation induces rapid and profound alterations in the trafficking of T cells.
Eur J Immunol.
2000;
30
3207-3218
87
Klugewitz K, Blumenthal-Barby F, Schrage A, Knolle P A, Hamann A, Crispe I N.
Immunomodulatory effects of the liver: deletion of activated CD4+ effector cells and suppression of IFN-gamma-producing cells after intravenous protein immunization.
J Immunol.
2002;
169
2407-2413
88
Itoh Y, Morita A, Nishioji K et al..
Clinical significance of elevated serum interferon- inducible protein-10 levels in hepatitis C virus carriers with persistently normal serum transaminase levels.
J Viral Hepat.
2001;
8
341-348
89
Narumi S, Tominaga Y, Tamaru M et al..
Expression of IFN-inducible protein-10 in chronic hepatitis.
J Immunol.
1997;
158
5536-5544
90
Yoong K F, Afford S C, Jones R et al..
Expression and function of CXC and CC chemokines in human malignant liver tumors: a role for human monokine induced by gamma-interferon in lymphocyte recruitment to hepatocellular carcinoma.
Hepatology.
1999;
30
100-111
91
Tamaru M, Nishioji K, Kobayashi Y et al..
Liver-infiltrating T lymphocytes are attracted selectively by IFN-inducible protein-10.
Cytokine.
2000;
12
299-308
92
Kim C H, Kunkel E J, Boisvert J et al..
Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential.
J Clin Invest.
2001;
107
595-601
93
Heydtmann M, Lalor P F, Eksteen J A, Hubscher S G, Briskin M, Adams D H.
CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver.
J Immunol.
2005;
174
1055-1062
94
Shields P L, Morland C M, Salmon M, Qin S, Hubscher S G, Adams D H.
Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver.
J Immunol.
1999;
163
6236-6243
95
Wysocki C A, Panoskaltsis-Mortari A, Blazar B R, Serody J S.
Leukocyte migration and graft-versus-host disease.
Blood.
2005;
105
4191-4199
96a
Ichiba T, Teshima T, Kuick R et al..
Early changes in gene expression profiles of hepatic GVHD uncovered by oligonucleotide microarrays.
Blood.
2003;
102
763-771
96b
Curbishley S M, Eksteen B, Lalor P F, Adam D H.
CXCR3 activation promotes lymphocyte transendothelial migration across hepatic endothelium under conditions of flow.
Am J Pathol.
2005;
, (in press)
97
Duffner U, Lu B, Hildebrandt G C et al..
Role of CXCR3-induced donor T-cell migration in acute GVHD.
Exp Hematol.
2003;
31
897-902
98
Murai M, Yoneyama H, Harada A et al..
Active participation of CCR5(+)CD8(+) T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease.
J Clin Invest.
1999;
104
49-57
99
New J Y, Li B, Koh W P et al..
T cell infiltration and chemokine expression: relevance to the disease localization in murine graft-versus-host disease.
Bone Marrow Transplant.
2002;
29
979-986
100
Serody J S, Cook D N, Kirby S L, Reap E, Shea T C, Frelinger J A.
Murine T lymphocytes incapable of producing macrophage inhibitory protein-1 are impaired in causing graft-versus-host disease across a class I but not class II major histocompatibility complex barrier.
Blood.
1999;
93
43-50
101
Adams D H, Hubscher S G, Fisher N C, Williams A, Robinson M.
Expression of E-selectin and E-selectin ligands in human liver inflammation.
Hepatology.
1996;
24
533-538
102
Wong J, Johnston B, Lee S S et al..
A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature.
J Clin Invest.
1997;
99
2782-2790
103
Lalor P F, Edwards S, McNab G, Salmi M, Jalkanen S, Adams D H.
Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells.
J Immunol.
2002;
169
983-992
104
Adams D H, Hubscher S G, Shaw J, Rothlein R, Neuberger J M.
Intercellular adhesion molecule 1 on liver allografts during rejection.
Lancet.
1989;
2
1122-1125
105
Harning R, Koo G C, Szalay J.
Regulation of the metastasis of murine ocular melanoma by natural killer cells.
Invest Ophthalmol Vis Sci.
1989;
30
1909-1915
106
Wong J, Kubes P, Zhang Y et al..
Role of ICAM-1 in chronic hepatic allograft rejection in the rat.
Am J Physiol Gastrointest Liver Physiol.
2002;
283
G196-G203
107
Gassel H J, Otto C, Gassel A M et al..
Tolerance of rat liver allografts induced by short-term selective immunosuppression combining monoclonal antibodies directed against CD25 and CD54 with subtherapeutic cyclosporine.
Transplantation.
2000;
69
1058-1067
108
Panoskaltsis-Mortari A, Hermanson J R, Haddad I Y, Wangensteen O D, Blazar B R.
Intercellular adhesion molecule-I (ICAM-I, CD54) deficiency segregates the unique pathophysiological requirements for generating idiopathic pneumonia syndrome (IPS) versus graft-versus-host disease following allogeneic murine bone marrow transplantation.
Biol Blood Marrow Transplant.
2001;
7
368-377
109
Martelius T, Salaspuro V, Salmi M et al..
Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection.
Am J Pathol.
2004;
165
1993-2001
110
Ayres R C, Neuberger J M, Shaw J, Joplin R, Adams D H.
Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines.
Gut.
1993;
34
1245-1249
111
Grakoui A, Bromley S K, Sumen C et al..
The immunological synapse: a molecular machine controlling T cell activation.
Science.
1999;
285
221-227
112
Yasoshima M, Nakanuma Y, Tsuneyama K, Van de Water J, Gershwin M E.
Immunohistochemical analysis of adhesion molecules in the micro-environment of portal tracts in relation to aberrant expression of PDC-E2 and HLA-DR on the bile ducts in primary biliary cirrhosis.
J Pathol.
1995;
175
319-325
113
Liang Y, Sasaki K.
Expression of adhesion molecules relevant to leukocyte migration on the microvilli of liver peritoneal mesothelial cells.
Anat Rec.
2000;
258
39-46
114
Bloom S, Fleming K, Chapman R, Neuberger J, Hubscher S.
Inappropriate expression of blood-group antigens in hepatic allografts.
Hepatology.
1994;
19
876-881
115
Isse K, Harada K, Zen Y et al..
Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts.
Hepatology.
2005;
41
506-516
116
Efsen E, Grappone C, Defranco R M et al..
Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans.
J Hepatol.
2002;
37
39-47
117
Matloubian M, David A, Engel S, Ryan J E, Cyster J G.
A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo.
Nat Immunol.
2000;
1
298-304
118
Wilbanks A, Zondlo S C, Murphy K et al..
Expression cloning of the strl33/bonzo/tymstr ligand reveals elements of cc, cxc, and cx3c chemokines.
J Immunol.
2001;
166
5145-5154
119
Sharron M, Pohlmann S, Price K et al..
Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes.
Blood.
2000;
96
41-49
120
Campbell J J, Qin S, Unutmaz D et al..
Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire.
J Immunol.
2001;
166
6477-6482
121
Boisvert J, Kunkel E J, Campbell J J, Keeffe E B, Butcher E C, Greenberg H B.
Liver-infiltrating lymphocytes in end-stage hepatitis C virus: subsets, activation status, and chemokine receptor phenotypes.
J Hepatol.
2003;
38
67-75
122
Sato T, Thorlacius H, Johnston B et al..
Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver.
J Immunol.
2005;
174
277-283
123
Leon M P, Bassendine M F, Wilson J L, Ali S, Thick M, Kirby J A.
Immunogenicity of biliary epithelium: investigation of antigen presentation to CD4+ T cells.
Hepatology.
1996;
24
561-567
124
Leon M P, Bassendine M F, Gibbs P, Thick M, Kirby J A.
Immunogenicity of biliary epithelium: study of the adhesive interaction with lymphocytes.
Gastroenterology.
1997;
112(3)
968-977
125
Dollinger M M, Howie S E, Plevris J N, Graham A M, Hayes P C, Harrison D J.
Intrahepatic proliferation of ‘naïve’ and ‘memory’ T cells during liver allograft rejection: primary immune response within the allograft.
FASEB J.
1998;
12
939-947
126
Yang Z F, Ho D W, Chu A C, Wang Y Q, Fan S T.
Linking inflammation to acute rejection in small-for-size liver allografts: the potential role of early macrophage activation.
Am J Transplant.
2004;
4
196-209
127
Henkart P A.
Mechanism of lymphocyte-mediated cytotoxicity.
Annu Rev Immunol.
1985;
3
31-58
128
Atkinson E A, Bleackley R C.
Mechanisms of lysis by cytotoxic T cells.
Crit Rev Immunol.
1995;
15
359-384
129
Simon M M, Waring P, Lobigs M et al..
Cytotoxic T cells specifically induce Fas on target cells, thereby facilitating exocytosis-independent induction of apoptosis.
J Immunol.
2000;
165
3663-3672
130
Smyth M J, Kelly J M, Sutton V R et al..
Unlocking the secrets of cytotoxic granule proteins.
J Leukoc Biol.
2001;
70
18-29
131
Lieberman J, Fan Z.
Nuclear war: the granzyme A-bomb.
Curr Opin Immunol.
2003;
15
553-559
132
Bossi G, Griffiths G M.
CTL secretory lysosomes: biogenesis and secretion of a harmful organelle.
Semin Immunol.
2005;
17
87-94
133
Bossi G, Trambas C, Booth S, Clark R, Stinchcombe J, Griffiths G M.
The secretory synapse: the secrets of a serial killer.
Immunol Rev.
2002;
189
152-160
134
Ryo R, Saigo K, Hashimoto M et al..
Treatment of post-transfusion graft-versus-host disease with nafamostat mesylate, a serine protease inhibitor.
Vox Sang.
1999;
76
241-246
135
Graubert T A, Dipersio J F, Russell J H, Ley T J.
Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation.
J Clin Invest.
1997;
100
904-911
136
Pham C T, Ley T J.
The role of granzyme B cluster proteases in cell-mediated cytotoxicity.
Semin Immunol.
1997;
9
127-133
137
Kuijf M L, Kwekkeboom J, Kuijpers M A et al..
Granzyme expression in fine-needle aspirates from liver allografts is increased during acute rejection.
Liver Transpl.
2002;
8
952-956
138
Harada K, Ozaki S, Gershwin M E, Nakanuma Y.
Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis.
Hepatology.
1997;
26
1399-1405
139
Jaiswal M, LaRusso N F, Shapiro R A, Billiar T R, Gores G J.
Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes.
Gastroenterology.
2001;
120
190-199
140
Nathan C, Muller W A.
Putting the brakes on innate immunity: a regulatory role for CD200?.
Nat Immunol.
2001;
2
17-19
141
Afford S C, Randhawa S, Eliopoulos A G, Hubscher S G, Young L S, Adams D H.
CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.
J Exp Med.
1999;
189
441-446
142
Afford S C, Ahmed-Choudhury J, Randhawa S et al..
CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells.
FASEB J.
2001;
15
2345-2354
143
Duffield J S, Forbes S J, Constandinou C M et al..
Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair.
J Clin Invest.
2005;
115
56-65
144
Ogasawara J, Watanabe-Fukunaga R, Adachi M et al..
Lethal effect of the anti-Fas antibody in mice.
Nature.
1993;
364
806-809
, [published erratum: Nature 1993;365:568]
145
Lacronique V, Mignon A, Fabre M et al..
Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice.
Nat Med.
1996;
2
80-86
146
Galle P R, Hofmann W J, Walczak H et al..
Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage.
J Exp Med.
1995;
182
1223-1230
147
Bradham C A, Plumpe J, Manns M P, Brenner D A, Trautwein C.
Mechanisms of hepatic toxicity. I. TNF-induced liver injury.
Am J Physiol.
1998;
275(3 pt 1)
G387-G392
148
Ahmed-Choudhury J, Russell C L, Randhawa S et al..
Differential induction of nuclear factor-kappaB and activator protein-1 activity after CD40 ligation is associated with primary human hepatocyte apoptosis or intrahepatic endothelial cell proliferation.
Mol Biol Cell.
2003;
14
1334-1345
149
Nagata S, Golstein P.
The Fas death factor.
Science.
1995;
267
1449-1456
150
Beyaert R, Van L G, Heyninck K, Vandenabeele P.
Signaling to gene activation and cell death by tumor necrosis factor receptors and Fas.
Int Rev Cytol.
2002;
214
225-272
151
Dempsey P W, Doyle S E, He J Q, Cheng G.
The signaling adaptors and pathways activated by TNF superfamily.
Cytokine Growth Factor Rev.
2003;
14
193-209
152
Jiang X, Wang X.
Cytochrome C-mediated apoptosis.
Annu Rev Biochem.
2004;
73
87-106
153
Bossi G, Stinchcombe J C, Page L J, Griffiths G M.
Sorting out the multiple roles of Fas ligand.
Eur J Cell Biol.
2000;
79
539-543
154
Bossi G, Griffiths G M.
Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells.
Nat Med.
1999;
5
90-96
155
Kojima Y, Kawasaki-Koyanagi A, Sueyoshi N, Kanai A, Yagita H, Okumura K.
Localization of Fas ligand in cytoplasmic granules of CD8+ cytotoxic T lymphocytes and natural killer cells: participation of Fas ligand in granule exocytosis model of cytotoxicity.
Biochem Biophys Res Commun.
2002;
296
328-336
156
Tanaka M, Itai T, Adachi M, Nagata S.
Downregulation of Fas ligand by shedding.
Nat Med.
1998;
4
31-36
157
Eliopoulos A G, Davies C, Knox P G et al..
CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily.
Mol Cell Biol.
2000;
20
5503-5515
158
Grell M, Zimmermann G, Gottfried E et al..
Induction of cell death by tumour necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane- anchored TNF.
EMBO J.
1999;
18
3034-3043
159
Van Kooten C, Bancherau J.
Functions of CD40 on B cells, dendritic cells and other cells.
Curr Opin Immunol.
1997;
9
330-337
160
Young L S, Eliopoulos A G, Gallagher N J, Dawson C W.
CD40 and epithelial cells: across the great divide.
Immunol Today.
1998;
19
502-506
161
Schmitz M L, Mattioli I, Buss H, Kracht M.
NF-kappaB: a multifaceted transcription factor regulated at several levels.
ChemBioChem.
2004;
5
1348-1358
162
Hanissian S H, Geha R S.
Jak3 is associated with CD40 and is critical for CD40 induction of gene expression in B cells.
Immunity.
1997;
6
379-387
163
Hirano T, Ishihara K, Hibi M.
Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors.
Oncogene.
2000;
19
2548-2556
164
Levy D E, Lee C K.
What does Stat3 do?.
J Clin Invest.
2002;
109
1143-1148
165
Kusters S, Tiegs G, Alexopoulou L et al..
In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis.
Eur J Immunol.
1997;
27
2870-2875
166
Stephens J, Cosyns M, Jones M, Hayward A.
Liver and bile duct pathology following cryptosporidium parvum infection of immunodeficient mice.
Hepatology.
1999;
30
27-35
167
Hayward A R, Levy J, Facchetti F et al..
Cholangiopathy and tumors of the pancreas, liver and biliary tree in boys with X-linked immunodeficiency and hyper-IgM.
J Immunol.
1997;
158
977-983
168
Guillonneau C, Louvet C, Renaudin K et al..
The role of TNF-related activation-induced cytokine-receptor activating NF-kappa B interaction in acute allograft rejection and CD40L-independent chronic allograft rejection.
J Immunol.
2004;
172
1619-1629
169
Mehling A, Loser K, Varga G et al..
Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity.
J Exp Med.
2001;
194
615-628
170
Kiener P A, Moran-Davis P, Rankin B M, Wahl A F, Aruffo A, Hollenbaugh D.
Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes.
J Immunol.
1995;
155
4917-4925
171
Yellin M J, Winikoff S, Fortune S M et al..
Ligation of CD40 on fibroblasts induces CD54 (ICAM-1) and CD106 (VCAM-1) up-regulation and IL-6 production and proliferation.
J Leukoc Biol.
1995;
58
209-216
172
Malik N, Greenfield B W, Wahl A F, Kiener P A.
Activation of human monocytes through CD40 induces matrix metalloproteinases.
J Immunol.
1996;
156
3952-3960
173
Grewal I S, Flavell R A.
CD40 and CD154 in cell-mediated immunity.
Annu Rev Immunol.
1998;
16
111-135
174
Streetz K, Leifeld L, Grundmann D et al..
Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure.
Gastroenterology.
2000;
119
446-460
175
Plumpe J, Malek N P, Bock C T, Rakemann T, Manns M P, Trautwein C.
NF-kappaB determines between apoptosis and proliferation in hepatocytes during liver regeneration.
Am J Physiol Gastrointest Liver Physiol.
2000;
278
G173-G183
176
Liedtke C, Trautwein C.
A protective role of Stat3 in Fas mediated apoptosis of the liver.
J Hepatol.
2004;
40
874-875
177
Spierings D C, de Vries E G, Vellenga E et al..
Tissue distribution of the death ligand TRAIL and its receptors.
J Histochem Cytochem.
2004;
52
821-831
178
Mori E, Thomas M, Motoki K et al..
Human normal hepatocytes are susceptible to apoptosis signal mediated by both TRAIL-R1 and TRAIL-R2.
Cell Death Differ.
2004;
11
203-207
179
Almasan A, Ashkenazi A.
Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy.
Cytokine Growth Factor Rev.
2003;
14
337-348
180
Wang S, El-Deiry W S.
TRAIL and apoptosis induction by TNF-family death receptors.
Oncogene.
2003;
22
8628-8633
181
Mundt B, Kuhnel F, Zender L et al..
Involvement of TRAIL and its receptors in viral hepatitis.
FASEB J.
2003;
17
94-96
182
Zender L, Hutker S, Mundt B et al..
NFkappaB-mediated upregulation of bcl-xl restrains TRAIL-mediated apoptosis in murine viral hepatitis.
Hepatology.
2005;
41
280-288
183
Higuchi H, Bronk S F, Takikawa Y et al..
The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis.
J Biol Chem.
2001;
276
38610-38618
184
Colell A, Coll O, Garcia-Ruiz C et al..
Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against tumor necrosis factor-induced cell death by replenishing mitochondrial glutathione.
Hepatology.
2001;
34
964-971
185
Higuchi H, Gores G J.
Mechanisms of liver injury: an overview.
Curr Mol Med.
2003;
3
483-490
186
Jaeschke H, Gores G J, Cederbaum A I, Hinson J A, Pessayre D, Lemasters J J.
Mechanisms of hepatotoxicity.
Toxicol Sci.
2002;
65
166-176
187
Graca L, Honey K, Adams E, Cobbold S P, Waldmann H.
Cutting edge: anti-CD154 therapeutic antibodies induce infectious transplantation tolerance.
J Immunol.
2000;
165
4783-4786
188
Harlan D M, Kirk A D.
The future of organ and tissue transplantation: can T-cell costimulatory pathway modifiers revolutionize the prevention of graft rejection?.
JAMA.
1999;
282
1076-1082
189
Swain M G et al..
Hepatology.
2005;
, (in press)
David H AdamsM.D.
Liver Research Group, MRC Centre for Immune Regulation, Institute of Biomedical Research (Fifth Floor) Wolfson Drive
The Medical School, Edgbaston, Birmingham
B15 2TT, United Kingdom
eMail: d.h.adams@bham.ac.uk