Semin Liver Dis 2005; 25(3): 327-336
DOI: 10.1055/s-2005-916324
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Etiology of Primary Biliary Cirrhosis: The Search for the Culprit

Patrick S.C Leung1 , Ross L. Coppel2 , M. Eric Gershwin1 , 3
  • 1Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Genomic and Biomedical Sciences Facility, Davis California
  • 2Department of Microbiology, Monash University, Melbourne, Australia
  • 3Chief, Division of Rheumatology, Allergy and Clinical Immunology
Further Information

Publication History

Publication Date:
06 September 2005 (online)

ABSTRACT

Primary biliary cirrhosis (PBC) is an organ-specific autoimmune disease characterized by the presence of high titer antimitochondrial autoantibodies (AMAs) and destruction of intrahepatic small bile ducts. Despite vigorous efforts in the characterization of autoantibodies and bile duct histopathology, the etiology of this disease is unclear. Although there is no correlation between the titer of AMAs and disease severity, the presence of AMAs usually occurs before symptoms of liver abnormalities. We believe that the production of AMAs is not an epiphenomenon, and an understanding of the mechanism of AMA induction will shed light on the etiology of PBC. Recent studies have suggested that the induction of PBC is multifactorial, in which the primary player involves the xenobiotics modification of mitochondrial proteins or exposure to xenobiotic-modified bacterial mitochondrial protein homologs, leading to breaking of tolerance to the human mitochondrial autoantigens and eventually liver pathology in genetic susceptible individuals. We discuss the immunophysiological characteristics of biliary epithelial cells, biochemistry of the 2-oxo-acid dehydrogenase complex, and environmental and genetic factors relevant to PBC.

REFERENCES

  • 1 Gershwin M E, Ansari A A, Mackay I R et al.. Primary biliary cirrhosis: an orchestrated immune response against epithelial cells.  Immunol Rev. 2000;  174 210-225
  • 2 Kaplan M M. Primary biliary cirrhosis: past, present, and future.  Gastroenterology. 2002;  123 1392-1394
  • 3 Kaplan M M. Primary biliary cirrhosis.  N Engl J Med. 1996;  335 1570-1580
  • 4 Leung P S, Coppel R L, Ansari A, Munoz S, Gershwin M E. Antimitochondrial antibodies in primary biliary cirrhosis.  Semin Liver Dis. 1997;  17 61-69
  • 5 Miyachi K, Hankins R W, Matsushima H et al.. Profile and clinical significance of anti-nuclear envelope antibodies found in patients with primary biliary cirrhosis: a multicenter study.  J Autoimmun. 2003;  20 247-254
  • 6 Worman H J, Courvalin J C. Antinuclear antibodies specific for primary biliary cirrhosis.  Autoimmun Rev. 2003;  2 211-217
  • 7 Mackay I R. Primary biliary cirrhosis showing high titer of autoantibody: report of a case.  N Engl J Med. 1958;  254 185
  • 8 Gershwin M E, Mackay I R, Sturgess A, Coppel R L. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis.  J Immunol. 1987;  138 3525-3531
  • 9 Kita H, Lian Z X, Van de Water J et al.. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells.  J Exp Med. 2002;  195 113-123
  • 10 Kita H, Matsumura S, He X S et al.. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis.  J Clin Invest. 2002;  109 1231-1240
  • 11 Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases.  J Exp Med. 1995;  181 1835-1845
  • 12 Shimoda S, Nakamura M, Ishibashi H et al.. Molecular mimicry of mitochondrial and nuclear autoantigens in primary biliary cirrhosis.  Gastroenterology. 2003;  124 1915-1925
  • 13 Shimoda S, Nakamura M, Shigematsu H et al.. Mimicry peptides of human PDC-E2 163-176 peptide, the immunodominant T-cell epitope of primary biliary cirrhosis.  Hepatology. 2000;  31 1212-1216
  • 14 Van de Water J, Gershwin M E, Leung P, Ansari A, Coppel R L. The autoepitope of the 74-kD mitochondrial autoantigen of primary biliary cirrhosis corresponds to the functional site of dihydrolipoamide acetyltransferase.  J Exp Med. 1988;  167 1791-1799
  • 15 Tsuneyama K, Van De Water J, Van Thiel D et al.. Abnormal expression of PDC-E2 on the apical surface of biliary epithelial cells in patients with antimitochondrial antibody-negative primary biliary cirrhosis.  Hepatology. 1995;  22 1440-1446
  • 16 Harada K, Isse K, Tsuneyama K, Ohta H, Nakanuma Y. Accumulating CD57 + CD3 + natural killer T cells are related to intrahepatic bile duct lesions in primary biliary cirrhosis.  Liver Int. 2003;  23 94-100
  • 17 Harada K, Van de Water J, Leung P S et al.. In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset.  Hepatology. 1997;  25 791-796
  • 18 Yasoshima M, Tsuneyama K, Harada K, Sasaki M, Gershwin M E, Nakanuma Y. Immunohistochemical analysis of cell-matrix adhesion molecules and their ligands in the portal tracts of primary biliary cirrhosis.  J Pathol. 2000;  190 93-99
  • 19 Kaji K, Tsuneyama K, Nakanuma Y et al.. B7-2 positive cells around interlobular bile ducts in primary biliary cirrhosis and chronic hepatitis C.  J Gastroenterol Hepatol. 1997;  12 507-512
  • 20 Tsuneyama K, Van de Water J, Leung P S et al.. Abnormal expression of the E2 component of the pyruvate dehydrogenase complex on the luminal surface of biliary epithelium occurs before major histocompatibility complex class II and BB1/B7 expression.  Hepatology. 1995;  21 1031-1037
  • 21 Van de Water J, Turchany J, Leung P S et al.. Molecular mimicry in primary biliary cirrhosis. Evidence for biliary epithelial expression of a molecule cross-reactive with pyruvate dehydrogenase complex-E2.  J Clin Invest. 1993;  91 2653-2664
  • 22 Reynoso-Paz S, Leung P S, Van De Water J et al.. Evidence for a locally driven mucosal response and the presence of mitochondrial antigens in saliva in primary biliary cirrhosis.  Hepatology. 2000;  31 24-29
  • 23 Tanaka A, Nalbandian G, Leung P S et al.. Mucosal immunity and primary biliary cirrhosis: presence of antimitochondrial antibodies in urine.  Hepatology. 2000;  32 910-915
  • 24 Mostov K, Su T, ter Beest M. Polarized epithelial membrane traffic: conservation and plasticity.  Nat Cell Biol. 2003;  5 287-293
  • 25 Malmborg A C, Shultz D B, Luton F et al.. Penetration and co-localization in MDCK cell mitochondria of IgA derived from patients with primary biliary cirrhosis.  J Autoimmun. 1998;  11 573-580
  • 26 Fukushima N, Nalbandian G, Van De Water J et al.. Characterization of recombinant monoclonal IgA anti-PDC-E2 autoantibodies derived from patients with PBC.  Hepatology. 2002;  36 1383-1392
  • 27 Macdonald P, Palmer J, Kirby J A, Jones D E. Apoptosis as a mechanism for cell surface expression of the autoantigen pyruvate dehydrogenase complex.  Clin Exp Immunol. 2004;  136 559-567
  • 28 Odin J A, Huebert R C, Casciola-Rosen L, LaRusso N F, Rosen A. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis.  J Clin Invest. 2001;  108 223-232
  • 29 Dubel L, Tanaka A, Leung P S et al.. Autoepitope mapping and reactivity of autoantibodies to the dihydrolipoamide dehydrogenase-binding protein (E3BP) and the glycine cleavage proteins in primary biliary cirrhosis.  Hepatology. 1999;  29 1013-1018
  • 30 Leung P S, Van de Water J, Coppel R L, Nakanuma Y, Munoz S, Gershwin M E. Molecular aspects and the pathological basis of primary biliary cirrhosis.  J Autoimmun. 1996;  9 119-128
  • 31 Berg A, de Kok A. 2-Oxo acid dehydrogenase multienzyme complexes. The central role of the lipoyl domain.  Biol Chem. 1997;  378 617-634
  • 32 Perham R N, Packman L C. 2-Oxo acid dehydrogenase multienzyme complexes: domains, dynamics, and design.  Ann NY Acad Sci. 1989;  573 1-20
  • 33 Ishibashi H, Nakamura M, Shimoda S, Gershwin M E. T cell immunity and primary biliary cirrhosis.  Autoimmun Rev. 2003;  2 19-24
  • 34 Bunik V I. 2-Oxo acid dehydrogenase complexes in redox regulation.  Eur J Biochem. 2003;  270 1036-1042
  • 35 Harada K, Sudo Y, Kono N et al.. In situ nucleic acid detection of PDC-E2, BCOADC-E2, OGDC-E2, PDC-E1alpha, BCOADC-E1alpha, OGDC-E1, and the E3 binding protein (protein X) in primary biliary cirrhosis.  Hepatology. 1999;  30 36-45
  • 36 Palmer J M, Robe A J, Burt A D, Kirby J A, Jones D E. Covalent modification as a mechanism for the breakdown of immune tolerance to pyruvate dehydrogenase complex in the mouse.  Hepatology. 2004;  39 1583-1592
  • 37 MacDonald M J, Husain R D, Hoffmann-Benning S, Baker T R. Immunochemical identification of coenzyme Q0-dihydrolipoamide adducts in the E2 components of the alpha-ketoglutarate and pyruvate dehydrogenase complexes partially explains the cellular toxicity of coenzyme Q0.  J Biol Chem. 2004;  279 27278-27285
  • 38 Powell J J, Van De Water J, Gershwin M E. Evidence for the role of environmental agents in the initiation or progression of autoimmune conditions.  Environ Health Perspect. 1999;  107(suppl 5) 667-672
  • 39 Sutton I, Neuberger J. Primary biliary cirrhosis: seeking the silent partner of autoimmunity.  Gut. 2002;  50 743-746
  • 40 Selmi C, Invernizzi P, Keefe E B et al.. Epidemiology and pathogenesis of primary biliary cirrhosis.  J Clin Gastroenterol. 2004;  38 264-271
  • 41 Kita H, He X S, Gershwin M E. Autoimmunity and environmental factors in the pathogenesis of primary biliary cirrhosis.  Ann Med. 2004;  36 72-80
  • 42 Hertz R, Bar-Tana J. The acylation of proteins by xenobiotic amphipathic carboxylic acids in cultured rat hepatocytes.  Biochem J. 1988;  254 39-44
  • 43 Griem P, von Vultee C, Panthel K, Best S L, Sadler P J, Shaw III C F. T cell cross-reactivity to heavy metals: identical cryptic peptides may be presented from protein exposed to different metals.  Eur J Immunol. 1998;  28 1941-1947
  • 44 Liu S, Gong X, Yan X et al.. Reaction mechanism for mammalian pyruvate dehydrogenase using natural lipoyl domain substrates.  Arch Biochem Biophys. 2001;  386 123-135
  • 45 Bruggraber SFA, Leung P S, Amano K et al.. Autoreactivity to lipoate and a conjugated form of lipoate as hapten and hapten/carrier in primary biliary cirrhosis.  Gastroenterology. 2003;  125 1705-1713
  • 46 Long S A, Quan C, Van de Water J et al.. Immunoreactivity of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis.  J Immunol. 2001;  167 2956-2963
  • 47 Amano K, Leung P S, Rieger R et al.. Chemical xenobiotics and mitochondrial antigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic and food additive, 2-octynoic acid.  J Immunol. 2005;  174 5874-5883
  • 48 Leung P S, Quan C, Park O et al.. Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies.  J Immunol. 2003;  170 5326-5332
  • 49 Matsumura S, Kita H, He X S et al.. Comprehensive mapping of HLA-A0201-restricted CD8 T-cell epitopes on PDC-E2 in primary biliary cirrhosis.  Hepatology. 2002;  36 1125-1134
  • 50 Medzhitov R, Janeway Jr C A. How does the immune system distinguish self from nonself?.  Semin Immunol. 2000;  12 185-188 discussion 257-344
  • 51 Rose N R. Viral damage or ‘molecular mimicry’-placing the blame in myocarditis.  Nat Med. 2000;  6 631-632
  • 52 Amano K, Leung P S, Xu Q et al.. Xenobiotic-induced loss of tolerance in rabbits to the mitochondrial autoantigen of primary biliary cirrhosis is reversible.  J Immunol. 2004;  172 6444-6452
  • 53 Bogdanos D P, Baum H, Grasso A et al.. Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis.  J Hepatol. 2004;  40 31-39
  • 54 Haydon G H, Neuberger J. PBC: an infectious disease?.  Gut. 2000;  47 586-588
  • 55 Butler P, Hamilton-Miller J, Baum H, Burroughs A K. Detection of M2 antibodies in patients with recurrent urinary tract infection using an ELISA and purified PBC specific antigens. Evidence for a molecular mimicry mechanism in the pathogenesis of primary biliary cirrhosis?.  Biochem Mol Biol Int. 1995;  35 473-485
  • 56 Kita H, Matsumura S, He X S et al.. Analysis of TCR antagonism and molecular mimicry of an HLA-A0201-restricted CTL epitope in primary biliary cirrhosis.  Hepatology. 2002;  36(4 pt 1) 918-926
  • 57 Tanaka A, Prindiville T P, Gish R et al.. Are infectious agents involved in primary biliary cirrhosis? A PCR approach.  J Hepatol. 1999;  31 664-671
  • 58 Ballot E, Bandin O, Chazouilleres O, Johanet C, Poupon R. Immune response to lipopolysaccharide in primary biliary cirrhosis and autoimmune diseases.  J Autoimmun. 2004;  22 153-158
  • 59 Roesler K W, Schmider W, Kist M et al.. Identification of beta-subunit of bacterial RNA-polymerase-a non-species-specific bacterial protein-as target of antibodies in primary biliary cirrhosis.  Dig Dis Sci. 2003;  48 561-569
  • 60 Abdulkarim A S, Petrovic L M, Kim W R, Angulo P, Lloyd R V, Lindor K D. Primary biliary cirrhosis: an infectious disease caused by Chlamydia pneumoniae?.  J Hepatol. 2004;  40 380-384
  • 61 Leung P S, Park O, Matsumura S, Ansari A A, Coppel R L, Gershwin M E. Is there a relation between Chlamydia infection and primary biliary cirrhosis?.  Clin Dev Immunol. 2003;  10 227-233
  • 62 Mason A, Nair S. Primary biliary cirrhosis: new thoughts on pathophysiology and treatment.  Curr Gastroenterol Rep. 2002;  4 45-51
  • 63 Xu L, Shen Z, Guo L et al.. Does a betaretrovirus infection trigger primary biliary cirrhosis?.  Proc Natl Acad Sci USA. 2003;  100 8454-8459
  • 64 Xu L, Sakalian M, Shen Z, Loss G, Neuberger J, Mason A. Cloning the human betaretrovirus proviral genome from patients with primary biliary cirrhosis.  Hepatology. 2004;  39 151-156
  • 65 Mason A L, Xu L, Guo L et al.. Detection of retroviral antibodies in primary biliary cirrhosis and other idiopathic biliary disorders.  Lancet. 1998;  351 1620-1624
  • 66 Vergani D, Bogdanos D P, Baum H. Unusual suspects in primary biliary cirrhosis.  Hepatology. 2004;  39 38-41
  • 67 Selmi C, Ross S R, Ansari A A et al.. Lack of immunological or molecular evidence for a role of mouse mammary tumor retrovirus in primary biliary cirrhosis.  Gastroenterology. 2004;  127 493-501
  • 68 Elsgaard L, Pojana G, Miraval T, Eriksen J, Marcomini A. Biodegradation of linear alkylbenzene sulfonates in sulfate-leached soil mesocosms.  Chemosphere. 2003;  50 929-937
  • 69 Kaszycki P, Tyszka M, Malec P, Koloczek H. Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha. An application to real wastewater treatment.  Biodegradation. 2001;  12 169-177
  • 70 Kiefer Jr P M, McCarthy D L, Copley S D. The reaction catalyzed by tetrachlorohydroquinone dehalogenase does not involve nucleophilic aromatic substitution.  Biochemistry. 2002;  41 1308-1314
  • 71 Samanta S K, Singh O V, Jain R K. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation.  Trends Biotechnol. 2002;  20 243-248
  • 72 Charest M H, Antoun H, Beauchamp C J. Dynamics of water-soluble carbon substances and microbial populations during the composting of de-inking paper sludge.  Bioresour Technol. 2004;  91 53-67
  • 73 Fujii K, Kikuchi S, Satomi M, Ushio-Sata N, Morita N. Degradation of 17beta-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan.  Appl Environ Microbiol. 2002;  68 2057-2060
  • 74 Fujii K, Satomi M, Morita N, Motomura T, Tanaka T, Kikuchi S. Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo.  Int J Syst Evol Microbiol. 2003;  53(pt 1) 47-52
  • 75 Tiirola M A, Mannisto M K, Puhakka J A, Kulomaa M S. Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system.  Appl Environ Microbiol. 2002;  68 173-180
  • 76 Sorensen S R, Ronen Z, Aamand J. Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon.  Appl Environ Microbiol. 2001;  67 5403-5409
  • 77 Carvalho M F, Alves C C, Ferreira M I, De Marco P, Castro P M. Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene.  Appl Environ Microbiol. 2002;  68 102-105
  • 78 Kampfer P, Witzenberger R, Denner E B, Busse H J, Neef A. Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond.  Syst Appl Microbiol. 2002;  25 37-45
  • 79 Tanghe T, Dhooge W, Verstraete W. Isolation of a bacterial strain able to degrade branched nonylphenol.  Appl Environ Microbiol. 1999;  65 746-751
  • 80 Padgett K A, Selmi C, Kenny T P et al.. Phylogenetic and immunological definitions of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis.  J Autoimmun. 2005;  24 209-219
  • 81 Bogdanos D P, Choudhuri K, Vergani D. Molecular mimicry and autoimmune liver disease: virtuous intentions, malign consequences.  Liver. 2001;  21 225-232
  • 82 Shimoda S, Van de Water J, Ansari A et al.. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis.  J Clin Invest. 1998;  102 1831-1840
  • 83 Bjorkland A, Loof L, Mendel-Hartvig I, Totterman T H. Primary biliary cirrhosis. High proportions of B cells in blood and liver tissue produce anti-mitochondrial antibodies of several Ig classes.  J Immunol. 1994;  153 2750-2757
  • 84 Kaplan M M. Novosphingobium aromaticivorans: a potential initiator of primary biliary cirrhosis.  Am J Gastroenterol. 2004;  99 2147-2149
  • 85 Selmi C, Balkwill D L, Invernizzi P et al.. Patients with PBC react against Novosphingobium aromaticivorans, a ubiquitous xenobiotic metabolizing bacteria.  Hepatology. 2003;  38 1250-1257
  • 86 Prokunina L, Alarcon-Riquelme M. The genetic basis of systemic lupus erythematosus-knowledge of today and thoughts for tomorrow.  Hum Mol Genet. 2004;  13(spec 1) R143-R148
  • 87 Watt F E, James O F, Jones D E. Patterns of autoimmunity in primary biliary cirrhosis patients and their families: a population-based cohort study.  QJM. 2004;  97 397-406
  • 88 Tanaka A, Borchers A T, Ishibashi H, Ansari A A, Keen C L, Gershwin M E. Genetic and familial considerations of primary biliary cirrhosis.  Am J Gastroenterol. 2001;  96 8-15
  • 89 Brind A M, Bray G P, Portmann B C, Williams R. Prevalence and pattern of familial disease in primary biliary cirrhosis.  Gut. 1995;  36 615-617
  • 90 Tsuji K, Watanabe Y, Van De Water J et al.. Familial primary biliary cirrhosis in Hiroshima.  J Autoimmun. 1999;  13 171-178
  • 91 Selmi C, Mayo M J, Bach N et al.. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment.  Gastroenterology. 2004;  127 485-492
  • 92 Selmi C, Invernizzi P, Miozzo M, Podda M, Gershwin M E. Primary biliary cirrhosis: does X mark the spot?.  Autoimmun Rev. 2004;  3 493-499
  • 93 Invernizzi P, Miozzo M, Battezzati P M et al.. Frequency of monosomy X in women with primary biliary cirrhosis.  Lancet. 2004;  363 533-535
  • 94 Matsushita M, Miyakawa H, Tanaka A et al.. Single nucleotide polymorphisms of the mannose-binding lectin are associated with susceptibility to primary biliary cirrhosis.  J Autoimmun. 2001;  17 251-257
  • 95 Kimura Y, Selmi C, Leung P S et al.. Genetic polymorphisms influencing xenobiotic metabolism and transport in patients with primary biliary cirrhosis.  Hepatology. 2005;  41 55-63
  • 96 Chen C H, Nagayama K, Enomoto N et al.. Enhancement of mitochondrial gene expression in the liver of primary biliary cirrhosis.  Hepatol Res. 2005;  31 24-30
  • 97 Kikuchi K, Tanaka A, Miyakawa H et al.. Eta-1/osteopontin genetic polymorphism and primary biliary cirrhosis.  Hepatol Res. 2003;  26 87-90
  • 98 Selmi C, Zuin M, Biondi M L et al.. Genetic variants of endothelial nitric oxide synthase in patients with primary biliary cirrhosis: association with disease severity.  J Gastroenterol Hepatol. 2003;  18 1150-1155
  • 99 Tanaka A, Lindor K, Gish R et al.. Fetal microchimerism alone does not contribute to the induction of primary biliary cirrhosis.  Hepatology. 1999;  30 833-838
  • 100 Invernizzi P, De Andreis C, Sirchia S M et al.. Blood fetal microchimerism in primary biliary cirrhosis.  Clin Exp Immunol. 2000;  122 418-422
  • 101 Nomura K, Sumida Y, Yoh T et al.. Lack of evidence for leukocyte maternal microchimerism in primary biliary cirrhosis.  World J Gastroenterol. 2004;  10 2415-2416
  • 102 Schoniger-Hekele M, Muller C, Ackermann J et al.. Lack of evidence for involvement of fetal microchimerism in pathogenesis of primary biliary cirrhosis.  Dig Dis Sci. 2002;  47 1909-1914

M. Eric GershwinM.D. 

Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine

451 E. Health Sciences Drive, Suite 6510

Davis, CA 95616

Email: megershwin@ucdavis.edu

    >