Semin Thromb Hemost 2005; 31(4): 426-440
DOI: 10.1055/s-2005-916678
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Perioperative Monitoring of Primary and Secondary Hemostasis in Coronary Artery Bypass Grafting

Hans-Jörg Hertfelder1 , 5 , Monika Bös2 , 3 , Dagmar Weber1 , 4 , Kai Winkler2 , Peter Hanfland1 , Claus J. Preusse2
  • 1Institute of Experimental Haematology and Transfusion Medicine
  • 2Department of Cardiac Surgery, University Hospital Bonn, Bonn, Germany
  • 3Department of Neurology (present address), University Hospital Bonn, Bonn, Germany
  • 4(present address) Institute of Transfusion Medicine and Transplantation Immunology, University Hospital Münster, Münster, Germanys
  • 5Medical Vice Director
Further Information

Publication History

Publication Date:
07 September 2005 (online)

ABSTRACT

On-pump cardiac surgery is accompanied by complex alterations of hemostasis. The excessive postoperative bleeding has been attributed to acquired platelet dysfunction, impaired plasmatic coagulation, and increased fibrinolysis. The characterization of the hemostatic defects responsible for bleeding is crucial for specific treatment and optimal clinical management of the patient. For rapid determination of platelet-dependent primary hemostatic capacity (PHC), the Platelet Function Analyzer PFA-100® system is available. To evaluate the PFA performance in perioperative monitoring, a study was performed in 49 patients selected for low bleeding risk undergoing selective primary coronary artery bypass grafting (CABG). We compared PHC with Simplate bleeding time (BT) and platelet aggregometry. Furthermore, we analyzed global hemostasis by thromboelastography (TEG) and plasmatic coagulation by standard clotting tests prothrombin time (PT, Quick), activated partial thromboplastin time (aPTT), thrombin time (TT) and clotting factors and fibrinolysis by batroxobin (reptilase) time (RT). In all patients BT was postoperatively increased by 1.5- to 2-fold irrespective of perioperative complications and decreased to mildly prolonged values on the first postoperative day (1st day). In patients without complications, PHC in both collagen-adenosine diphosphate closure time (CADP-CT: 83 seconds preop, 78 seconds postop, and 74 seconds 1st day) and collagen-epinephrine closure time (CEPI-CT: 98 seconds preop, 95 seconds postop, 85 seconds 1st day) remained nearly stable. Apart from a patient with postoperative moderate thrombocytopenia, in bleeding patients no other significant defect of postoperative platelet hemostatic capacity was observed. However, on 1st day, the PHC of those patients was significantly reduced compared with nonbleeding patients.

In patients with postoperative myocardial ischemia, increased PHC was identified by significantly shorter postoperative CADP-CT (66 seconds vs. 83 seconds) than in uncomplicated patients. By aggregometry, partial platelet dysfunction was observed in some patients without correlation to bleeding complications.

In seven of 9 patients the postoperative bleeding complication was attributed to prolonged heparin anticoagulation and/or mildly enhanced fibrinogenolysis/fibrinolysis by TEG and standard plasmatic coagulation tests (TEG: k time 18 minutes vs. 8 minutes; aPTT: 47 seconds vs. 32 seconds; TT: 18.0 seconds vs. 12.3 seconds) and (RT: 19.5 seconds vs. 17.7 seconds).

The impairment of PHC, platelet aggregation, and clotting factors observed on the 1st day in bleeding and in intra-aortic balloon pump (IABP) patients are most likely secondary effects, for example, loss of active platelets and clotting factors, to the primary postoperative bleeding or implantation of the IABP.

In conclusion, our data indicate that in standard CABG procedures highly variable alterations of the hemostatic system occur after cardiopulmonary bypass (CPB) even in patients with assumed low operative risks.

For identification of post-CPB bleeding complications, thromboelastography, aPTT, and TT and heparin and batroxobin (reptilase) time as fibrinolysis-sensitive assays are useful. Platelet function appears to be rapidly restored in uncomplicated CABG. PHC determination by PFA-100 demonstrates a high specificity for adequate platelet function and, therefore, could be beneficial in improved transfusion of platelet concentrates.

PHC testing by PFA-100 may help identify postoperative platelet hyper-reactivity associated with myocardial lesion.

REFERENCES

  • 1 Harker L A, Malpass T W, Branson H E, Hessel E A, Slichter S J. Mechanism of abnormal bleeding in patients undergoing cardiopulmonary bypass: acquired transient platelet dysfunction associated with selective granule release.  Blood. 1980;  56 824-834
  • 2 Mammen E F, Koets M H, Washington B C et al.. Hemostasis changes during cardiopulmonary bypass.  Semin Thromb Hemost. 1985;  11 281-292
  • 3 Woodman R C, Harker L A. Bleeding complications associated with cardiopulmonary bypass.  Blood. 1990;  76 1680-1697
  • 4 Rinder C S, Bohnert J, Rinder H M, Mitchell J, Ault K, Hillman R. Platelet activation and aggregation during cardiopulmonary bypass.  Anesthesiology. 1991;  75 388-393
  • 5 Tanaka K, Takao M, Yada I, Yuasa H, Kusagawa M, Deguchi K. Alterations in coagulation and fibrinolysis associated with cardiopulmonary bypass during open heart surgery.  J Cardiothorac Anesth. 1989;  3 181-188
  • 6 Mammen E, Alshameeri R, Comp P. Preliminary data from a field trial of the PFA-100® system.  Semin Thromb Hemost. 1995;  21(suppl 2) 113-121
  • 7 Mielke C H. Measurement of the bleeding time.  Thromb Haemost. 1984;  52 210-211
  • 8 Kratzer M AA, Born G VR. Simulation of primary hemostasis in vitro.  Haemostasis. 1985;  15 357-362
  • 9 Kundu S, Sio R, Mitu A, Ostgaard R. Evaluation of platelet function by PFA-100® .  Clin Chem. 1994;  40 1827-1828
  • 10 Kundu S, Heilmann E, Sio R, Garcia C, Davidson R, Ostgaard R. Description of an in vitro platelet function analyzer-PFA-100® .  Semin Thromb Hemost. 1995;  21(suppl 2) 106-112
  • 11 Poujol C, Nurden A, Paponneau A, Heilmann E, Nurden P. Ultrastructural analysis of the distribution of von Willebrand factor and fibrinogen in platelet aggregates formed in the PFA-100 .  Platelets. 1998;  9 381-389
  • 12 Holloway D S, Summaria L, Sandesara J, Vagher J P, Alexander J C, Caprini J A. Decreased platelet number and function and increased fibrinolysis contribute to post-operative bleeding in cardiopulmonary bypass patients.  Thromb Haemost. 1988;  59 62-67
  • 13 Tabuchi N, de Haan J, van Oeveren W. Rapid recovery of platelet function after cardiopulmonary bypass.  Blood. 1993;  82 2930-2931
  • 14 Ellison N, Beatty C P, Blake D R, Wurzel H A, MacVaugh H. Heparin rebound. Studies in patients and volunteers.  J Thorac Cardiovasc Surg. 1974;  67 723-729
  • 15 Wenzel E, Holzhüter H, Muschietti F et al.. [Reliability of tests for fibrinogen (fibrin) degradation products in plasma with thrombin coagulase, reptilase and thrombin clotting time (author's trans)].  Dtsch Med Wochenschr. 1974;  99 746-756
  • 16 Mammen E F, Comp P C, Gosselin R et al.. PFA-100 system: a new method for assessment of platelet dysfunction.  Semin Thromb Hemost. 1998;  24 195-202
  • 17 von Pape K, Aland E, Bohner J. Platelet function analysis with PFA-100® in patients medicated with acetylsalicylic acid strongly depends on concentration of sodium citrate used for anticoagulation of blood samples.  Thromb Res. 2000;  98 295-299
  • 18 Michelson A D, Barnard M R, Khuri S F, Rohrer M J, MacGregor H, Valeri C R. The effects of aspirin and hypothermia on platelet function in vivo.  Br J Haematol. 1999;  104 64-68
  • 19 Valeri C R, MacGregor H, Cassidy G, Tinney R, Pompei F. Effects of temperature on bleeding time and clotting time in normal and female volunteers.  Crit Care Med. 1995;  23 698-704
  • 20 Hertfelder H J, Weber D, Bös M, Preuße C J, Hanfland P. In vitro primary hemostatic function in coronary artery bypass grafting.  Thromb Haemost. 1997;  , Suppl: abstr PS-242
  • 21 Lasne D, Fiemeyer A, Chatellier G, Chammas C, Baron J, Aiach M. A study of platelet functions with a new analyzer using high shear stress (PFA-100) in patients undergoing coronary artery bypass graft.  Thromb Haemost. 2000;  84 794-799
  • 22 Slaughter T, Sreeram G, Sharma A, El-Moalem H, East C, Greenberg C. Reversible shear-mediated platelet dysfunction during cardiac surgery as assessed by PFA-100® platelet function analyzer.  Blood Coagul Fibrinol. 2001;  12 85-93
  • 23 Golanski J, Golanski R, Chizynski K et al.. Platelet hyperreactivity after coronary artery bypass grafting: the possible relevance to glycoprotein polymorphisms. A preliminary report.  Platelets. 2001;  12 241-247
  • 24 Kestin A S, Valeri C R, Khuri S F et al.. The platelet function defect of cardiopulmonary bypass.  Blood. 1993;  82 107-117
  • 25 Holdright D R, Hunt B J, Parratt R et al.. The effects of cardiopulmonary bypass on systemic and coronary levels of von Willebrand factor.  Eur J Cardiothorac Surg. 1995;  9 18-21
  • 26 von Ruecker A, Hufnagel P, Dickerhoff R, Murday H, Bidlingmaier F. Qualitative and quantitative changes in platelets after coronary artery bypass surgery may help identify thrombotic complications and infections.  Klin Wochenschr. 1989;  67 1042-1047
  • 27 Forestier F, Coiffic A, Mouton C, Ekouevi D, Chêne G, Janvier G. Platelet function point-of-care tests in post-bypass cardiac surgery: are they relevant?.  Br J Anaesth. 2002;  89 715-721
  • 28 Raman S, Silverman N A. Clinical utility of the platelet function analyzer (PFA-100) in cardiothoracic procedures involving extracorporeal circulation.  J Thorac Cardiovasc Surg. 2001;  122 190-191
  • 29 Cammerer U, Dietrich W, Rampf T, Braun S L, Richter J A. The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery.  Anesth Analg. 2003;  96 51-57
  • 30 Spiess B D, Tuman K J, McCarthy R J, DeLaria G A, Schillo R, Ivankovich A D. Thromboelastography as an indicator of post-cardiopulmonary bypass coagulopathies.  J Clin Monit. 1987;  3 25-30
  • 31 Royston D, von Kier S. Reduced haemostatic factor transfusion using heparinase-modified thromboelastography during cardiopulmonary bypass.  Br J Anaesth. 2001;  86 575-578
  • 32 Wang J S, Lin C Y, Hung W T et al.. Thromboelastogram fails to predict postoperative hemorrhage in cardiac patients.  Ann Thorac Surg. 1992;  53 435-439

Hans-Jörg HertfelderM.D. Ph.D. 

Institute of Experimental Haematology and Transfusion Medicine

University Hospital Bonn, Sigmund-Freud-Str. 25

53105 Bonn, Germany

Email: Hans-Joerg.Hertfelder@ukb.uni-bonn.de