Subscribe to RSS
DOI: 10.1055/s-2005-918427
Heck Reaction of Aryl Bromides with Pent-4-en-2-ol, 2-Phenylpent-4-en-2-ol, or Hept-6-en-3-ol Catalysed by a Palladium-Tetraphosphine Complex
Publication History
Publication Date:
25 October 2005 (online)
Abstract
The tetraphosphine cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane in combination with [Pd(η3-C3H5)Cl]2 affords a very efficient catalyst for the Heck reaction of aryl bromides with pent-4-en-2-ol, 2-phenylpent-4-en-2-ol, or hept-6-en-3-ol. With pent-4-en-2-ol or hept-6-en-3-ol, the selectivity in favour of the formation of the 5-arylpentan-2-one or 7-arylheptan-3-one derivatives, respectively, depends on the substituents on the aryl bromide and on the base. Sterically congested and electron-rich aryl bromides gave selectively the linear ketones by migration of the double bond. With electron-poor aryl bromides, the formation of large amounts of (E)-1-arylalk-1-enol derivatives or side products was observed in some cases. Similar reactions rates were observed with electron-poor and electron-rich aryl bromides. Several reactions can be performed with as little as 0.01% catalyst. A wide variety of substituents, such as methoxy, dimethylamino, fluoro, trifluoromethyl, acetyl, benzoyl, formyl, carboxy, or cyano groups, on the aryl bromides are tolerated. The coupling of very sterically congested aryl bromides, such as 9-bromoanthracene or 2-bromo-1,3,5-triisopropylbenzene, also proceeds in good yields. Heck reaction with 2-phenylpent-4-en-2-ol gave the expected (E)-5-aryl-2-phenylpent-4-en-2-ol derivatives in high turnover numbers (TONs) and high selectivities in most cases. However, with some electron-poor aryl bromides the selective formation of 1-arylprop-1-ene derivatives resulting from a C-C bond cleavage was observed.
Key words
Heck reaction - aryl bromides - palladium catalysis - alkenols
- 1
de Meijere A.Meyer F. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379 - 2
Reetz MT. In Transition Metal Catalysed ReactionsDavies SG.Murahashi S.-I. Blackwell Science; Oxford: 1999. - 3
Beletskaya I.Cheprakov A. Chem. Rev. 2000, 100: 3009 - 4
Withcombe N.Hii (Mimi) KK.Gibson S. Tetrahedron 2001, 57: 7449 - 5
Littke A.Fu G. Angew. Chem. Int. Ed. 2002, 41: 4176 - 6
Farina V. Adv. Synth. Catal. 2004, 346: 1553 - 7
Muzart J. Tetrahedron 2005, 61: 4176 - 8
Dyker G.Markwitz H. Synthesis 1998, 1750 - 9
Qadir M.Priestley RE.Rising TWDF.Gelbrich T.Coles SJ.Hursthouse MB.Sheldrake PW.Whittall N.Hii (Mimi) KK. Tetrahedron Lett. 2003, 44: 3675 - 10
Dyker G.Kadzimirsz D. Eur. J. Org. Chem. 2003, 3167 - 11
Dyker G.Grundt P.Markwitz H.Henkel G. J. Org. Chem. 1998, 63: 6043 - 12
Taylor EC.Wang Y. Heterocycles 1998, 48: 1537 - 13
Dyker G.Grundt P. Helv. Chim. Acta 1999, 82: 588 - 14
Ohno H.Okumura M.Maeda S.-I.Iwasaki H.Wakayama R.Tanaka T. J. Org. Chem. 2003, 68: 7722 - 15
Gangjee A.Yu J.Kisliuk RL.Haile WH.Sobrero G.McGuire JJ. J. Med. Chem. 2003, 46: 591 - 16
Larock RC.Leung W.-Y.Stolz-Dunn S. Tetrahedron Lett. 1989, 30: 6629 - 17
Tamaru Y.Yamada Y.Yoshida Z. Tetrahedron 1979, 35: 329 - 18
Laurenti D.Feuerstein M.Pèpe G.Doucet H.Santelli M. J. Org. Chem. 2001, 66: 1633 - 19
Feuerstein M.Laurenti D.Bougeant C.Doucet H.Santelli M. Chem. Commun. (Cambridge) 2001, 325 - 20
Feuerstein M.Berthiol F.Doucet H.Santelli M. Org. Biomol. Chem. 2003, 1: 2235 - 21
Feuerstein M.Doucet H.Santelli M. J. Org. Chem. 2001, 66: 5923 - 22
Feuerstein M.Doucet H.Santelli M. Synlett 2001, 1980 - 23
Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2002, 43: 2191 - 24
Berthiol F.Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2002, 43: 5625 - 25
Berthiol F.Doucet H.Santelli M. Tetrahedron Lett. 2003, 44: 1221 - 26
Berthiol F.Doucet H.Santelli M. Synlett 2003, 841 - 27
Kondolff I.Doucet H.Santelli M. Tetrahedron Lett. 2003, 44: 8487 - 28
Kondolff I.Doucet H.Santelli M. Synlett 2004, 1561 - 29
Berthiol F.Doucet H.Santelli M. Tetrahedron Lett. 2004, 45: 5633 - 30
Lemhadri M.Doucet H.Santelli M. Tetrahedron 2004, 50: 11533 - 31
Berthiol F.Doucet H.Santelli M. Eur. J. Org. Chem. 2005, 1367 - 32
Ranganathan S.Kumar R.Maniktala V. Tetrahedron 1984, 40: 1167 - 33
Kondo T.Kodoi K.Nishinaga E.Okada T.Morisaki Y.Watanabe Y.Mitsudo T.-A. J. Am. Chem. Soc. 1998, 120: 5587 - 34
Wolfe JP.Rossi MA. J. Am. Chem. Soc. 2004, 126: 1620 - 35
Hay MB.Hardin AR.Wolfe JP. J. Org. Chem. 2005, 70: 3099 - 36
Bradshaw J, andCollins I. inventors; DE 19770217. - 37
Wennerberg J.Olofsson C.Frejd T. J. Org. Chem. 1998, 63: 3595 - 38
Kise N.Suzumoto T.Shono T. J. Org. Chem. 1994, 59: 1407 - 39
Bohlmann F.Krueger M. Liebigs Ann. Chem. 1985, 560 - 40
Guthrie RW.Kaplan GL.Mennona FA.Tilley JW.Kierstead RW.Mullin JG.LeMahieu RA.Zawoiski S.O" Donnell M.Crowley H.Yaremko B.Welton AF. J. Med. Chem. 1989, 32: 1820 - 41
Peyroux E.Berthiol F.Doucet H.Santelli M. Eur. J. Org. Chem. 2004, 1075 - 42
Kayaki Y.Koda T.Ikariya T. Eur. J. Org. Chem. 2004, 4989 - 43
Fuerstner A.Seidel G. Synlett 1998, 161 - 44
Araki S.Hatano M.Ito H.Butsugan Y. J. Organomet. Chem. 1987, 333: 329 - 45
Fakhfakh MA.Fournet A.Prina E.Mouscadet J.-F.Franck X.Hocquemiller R.Figadere B. Bioorg. Med. Chem. 2003, 11: 5013 - 46
Ota T.Terashima M. J. Heterocycl. Chem. 1987, 24: 377