Subscribe to RSS
DOI: 10.1055/s-2005-918470
A Synthesis of (+)-Obtusenyne
Publication History
Publication Date:
14 November 2005 (online)
![](https://www.thieme-connect.de/media/synthesis/200519/lookinside/thumbnails/10.1055-s-2005-918470-1.jpg)
Abstract
A synthesis of the halogenated medium-ring ether natural product (+)-obtusenyne is reported utilizing a Claisen rearrangement and an intramolecular hydrosilation as key steps.
Key words
total synthesis - natural product - medium-ring ether
- 1
King TJ.Imre S.Öztunc A. Tetrahedron Lett. 1979, 20: 1453 - 2
Howard BM.Schulte GR.Fenical W.Solheim B.Clardy J. Tetrahedron 1980, 36: 1747 - 3
Elliott MC. Contemp. Org. Synth. 1994, 1: 457 - Total syntheses of obtusenyne:
-
4a
Fujiwara K.Awakura M.Tsunashima M.Nakamura A.Honma T.Murai A. J. Org. Chem. 1999, 64: 2616 -
4b
Crimmins MT.Powell MT. J. Am. Chem. Soc. 2003, 125: 7592 - Total synthesis of brasilenyne and citation of important contributions in the field:
-
5a
Denmark SE.Yang S.-M. J. Am. Chem. Soc. 2002, 124: 2102 -
5b
Denmark SE.Yang S.-M. J. Am. Chem. Soc. 2004, 126: 12432 ; and references cited therein - 6
Boeckman RK.Zhang J.Reeder MR. Org. Lett. 2002, 4: 3891 - 7
Nakamura I.Yamamoto Y. Chem. Rev. 2004, 104: 2127 - 8
Burton JW.Clark JS.Derrer S.Stork TC.Bendall JG.Holmes AB. J. Am. Chem. Soc. 1997, 119: 7483 ; and references cited therein -
9a
Curtis NR.Holmes AB.Looney MG. Tetrahedron 1991, 47: 7171 -
9b
Curtis NR.Holmes AB.Looney MG. Tetrahedron Lett. 1992, 33: 671 -
9c
Curtis NR.Holmes AB. Tetrahedron Lett. 1992, 33: 675 - 12
Burgess K.Henderson I. Tetrahedron: Asymmetry 1990, 1: 57 - 13
Mohr P.Rösslein L.Tamm C. Tetrahedron Lett. 1989, 30: 2513 - 15
Congreve MS.Davison EC.Fuhry MAM.Holmes AB.Payne AN.Robinson RA.Ward SE. Synlett 1993, 663 - 16
Tsushima K.Murai A. Tetrahedron Lett. 1992, 33: 4345 - 17
Bendall JG.Payne AN.Screen TEO.Holmes AB. Chem. Commun. 1997, 1067
References
All new compounds exhibited satisfactory spectroscopic and exact mass/elemental analysis data.
11The enantiomeric excess and absolute configuration of (+)-2 were determined by analysis of the elimination product methyl (4R,2E)-hydroxyhex-2-enoate that was formed in 86% yield by the treatment of (+)-2 with DBU. The enantiomeric excess of the allylic alcohol was determined by 1H NMR chiral shift reagent [(+)-Eu(hfc)3] analysis, with the absolute configuration being assigned by comparison of the optical rotation of the allylic alcohol with that of its enantiomer. [12] The enantiomeric excess of (+)-2 was confirmed by Mosher ester analysis of the secondary alcohol formed by the treatment of 3 with TBAF.
14The relative stereochemistry of the racemic diol (±)-7 was determined by 1H NMR NOE and coupling constant analysis of the derived acetonide. [9c]
18NMR data for synthetic 1: 1H NMR (500 MHz, C6D6, 50 °C): δ = 5.92 (dt, 1 H, J = 10.8, 7.3 Hz), 5.53-5.43 (m, 3 H), 4.20-4.13 (m, 1 H), 3.90 (dt, 1 H, J = 10.8, 2.8 Hz), 3.77 (dt, 1 H, J = 10.8, 3.0 Hz), 3.74-3.68 (m, 1 H), 3.02 (ddt, 1 H, J = 14.2, 1.2, 7.1 Hz), 2.92 (d, 1 H, J = 2.0 Hz), 2.87 (dt, 1 H, J = 14.7, 7.0 Hz), 2.78-2.62 (br m, 2 H), 2.52 (ddd, 1 H, J = 12.9, 6.5, 3.0 Hz), 2.40 (ddd, 1 H, J = 13.2, 6.6, 2.9 Hz), 1.91 (dqn, 1 H, J = 14.2, 7.4 Hz), 1.74 (dqn, 1 H, J = 14.2, 7.4 Hz), 0.85 (t, 1 H, J = 7.4 Hz). 13C NMR (125 MHz, C6D6, 34 °C): δ = 140.7 (C-4), 110.7 (C-3), 82.8 (C-1), 80.1 (C-2), 63.3 (C-7), 56.6 (C-12), 35.3 (C-5), 32.0 (C-8), 31.2 (br, C-11), 28.7 (C-14), 10.1 (C-15). Owing to the conformational mobility of the natural product the signals due to C-6 and C-13 in the 13C NMR spectrum were broadened to the baseline. Signals assignable to C-9 and C-10 were obscured by solvent.