References
<A NAME="RD29105ST-1A">1a</A>
Hostettman K.
Hostettman M. In
Methods in Plant Biochemistry: Plant Phenolics
Dey PM.
Harbone JB.
Academic Press;
New York:
1989.
Vol. 1:
p.493
<A NAME="RD29105ST-1B">1b</A>
Bennett GJ.
Lee H.-H.
Phytochemistry
1989,
28:
967
<A NAME="RD29105ST-2A">2a</A>
Abdel-Lateff A.
Klemke C.
König GM.
Wright AD.
J. Nat. Prod.
2003,
66:
706
<A NAME="RD29105ST-2B">2b</A>
Chiang Y.-M.
Kuo Y.-H.
Oota S.
Fukuyama Y.
J. Nat. Prod.
2003,
66:
1070
<A NAME="RD29105ST-2C">2c</A>
Pedro M.
Cerqueira F.
Sousa ME.
Nascimento MSJ.
Pinto N.
Bioorg. Med. Chem.
2002,
10:
3725
<A NAME="RD29105ST-2D">2d</A>
Schaper K.-J.
Pickert M.
Frahm AW.
Arch. Pharm. Pharm. Med. Chem.
1999,
332:
91
<A NAME="RD29105ST-2E">2e</A>
Minami H.
Kinoshita M.
Fukuyama Y.
Komoda M.
Yoshizawa T.
Sugiura M.
Nakagawa K.
Tago H.
Phytochemistry
1994,
36:
501
<A NAME="RD29105ST-3">3</A>
Fukawa I,
Yoneda H, and
Asahi KKKK. inventors; Eur. Pat. EP0237004.
<A NAME="RD29105ST-4">4</A>
Kelkar AS.
Letcher RM.
Cheung K.-K.
Chiu K.-F.
Brown GD.
J. Chem. Soc., Perkin Trans. 1
2000,
3732
<A NAME="RD29105ST-5A">5a</A>
Cassilas LK.
Townsend CA.
J. Org. Chem.
1999,
64:
4050
<A NAME="RD29105ST-5B">5b</A>
Afzal M.
Al-Hassan JM.
Heterocycles
1980,
14:
1173
<A NAME="RD29105ST-5C">5c</A>
Grover PK.
Shah GD.
Shah RC.
J. Chem. Soc.
1955,
3982
<A NAME="RD29105ST-6">6</A>
Mahal HS.
Venkataraman K.
J. Chem. Soc.
1934,
1767
<A NAME="RD29105ST-7">7</A>
Ares JJ.
Outt PE.
Kakodkar SV.
Buss RC.
Geiger JC.
J. Org. Chem.
1993,
58:
7903
<A NAME="RD29105ST-8">8</A>
Ibrahim SS.
Ind. Eng. Chem. Res.
2001,
40:
37
<A NAME="RD29105ST-9A">9a</A>
Price WA.
Silva AMS.
Cavaleiro JAS.
Heterocycles
1993,
36:
2601
<A NAME="RD29105ST-9B">9b</A>
Alonso R.
Brossi A.
Tetrahedron Lett.
1988,
29:
735
<A NAME="RD29105ST-9C">9c</A>
Ayyangar NR.
Khan RA.
Desphande VH.
Tetrahedron Lett.
1988,
29:
2347
<A NAME="RD29105ST-10">10</A>
Typical Experimental Procedure.
Sodium (0.4 g, 16.7 mmol) was gradually added to 20 mL of dry MeOH and the mixture
was stirred until the solution reached r.t. 3-Bromo-2-methylchromone 4 (1 g, 4.2 mmol) and the appropriate benzaldehyde 5a,b (5.0 mmol) were added and the reaction mixture allowed to stand at r.t. for 48 h.
After this period, the solution was poured into ice and H2O and the pH adjusted to 4 with HCl. The yellow solid was removed by filtration, taken
up in CH2Cl2 and purified by silica gel column chromatography using CH2Cl2 as eluent. The solvent was evaporated to dryness and the residue was recrystallised
from EtOH to give the 3-bromo-2-styryl-chromones 6a,b in good yields (Table
[1]
).
<A NAME="RD29105ST-11">11</A>
Physical Data of 4′-Benzyloxy-3-bromo-2-styryl-chromone (
6b).
Mp 176-178 °C. 1H NMR (300.13 MHz, CDCl3): δ = 5.09 (s, 2 H, 4′-OCH
2C6H5), 6.99 (d, 2 H, J = 8.8 Hz, H-3′,5′), 7.30 (d, 1 H, J = 15.8 Hz, H-α), 7.34-7.45 (m, 6 H, H-6 and 4′-OCH2C6
H
5), 7.50 (d, 1 H, J = 7.8 Hz, H-8), 7.56 (d, 2 H, J = 8.8 Hz, H-2′,6′), 7.62 (d, 1 H, J = 15.8 Hz, H-β), 7.67 (dt, 1 H, J = 7.8, 1.6 Hz, H-7), 8.19 (dd, 1 H, J = 7.9, 1.6 Hz, H-5). 13C NMR (75.47 MHz, CDCl3): δ = 70.0 (4′-OCH2C6H5), 108.9 (C-3), 115.3 (C-3′,5′), 116.7 (C-α), 117.4 (C-8), 122.0 (C-10), 125.2 (C-6),
126.2 (C-5), 127.4 (C-2,6 of 4′-OCH2
C
6H5), 127.8 (C-1′), 128.1 (C-4 of 4′-OCH2
C
6H5), 128.6 (C-3,5 of 4′-OCH2
C
6H5), 129.7 (C-2′,6′), 133.8 (C-7), 136.3 (C-1 of 4′-OCH2
C
6H5), 139.2 (C-β), 154.7 (C-9), 158.7 (C-2), 160.6 (C-4′), 172.6 (C-4). MS (EI): m/z (rel. int.) = 434 (14) [M+•, 81Br], 432 (14) [M+•, 79Br], 388 (8), 234 (7), 205 (8), 92 (15), 91 (100), 65 (9). Anal. Calcd for C24H17BrO3: C, 66.53; H, 3.95. Found: C, 66.48; H, 4.27.
<A NAME="RD29105ST-12">12</A>
Bigi F.
Conforti ML.
Maggi R.
Piccinno A.
Sartori G.
Green Chem.
2000,
2:
101
<A NAME="RD29105ST-13A">13a</A>
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4442
<A NAME="RD29105ST-13B">13b</A>
Farina V.
Adv. Synth. Catal.
2004,
346:
1553
<A NAME="RD29105ST-13C">13c</A>
Reetz MT.
de Vries JG.
Chem. Commun.
2004,
1559
<A NAME="RD29105ST-13D">13d</A>
Heidenreich RG.
Köhler K.
Krauter JGE.
Pietsch J.
Synlett
2002,
1118
<A NAME="RD29105ST-13E">13e</A>
Biffis A.
Zecca M.
Basato M.
J. Mol. Catal. A: Chem.
2001,
173:
249
<A NAME="RD29105ST-13F">13f</A>
de Meijere A.
Meyer FE.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2379
<A NAME="RD29105ST-14">14</A>
Typical Experimental Procedure.
A mixture of the appropriate 3-bromo-2-styrylchromone 6a,b (0.6 mmol), PPh3 (15.7 mg, 0.06 mmol), tetrakis(tri-phenylphosphine)palladium(0) (34.7 mg, 0.03 mmol)
and Et3N (83.6 µL or 334.5 µL, 0.6 or 2.4 mmol) in N-methyl-2-pyrrolidinone (10 mL) was added to styrenes 7a-c (3 mmol). Each reaction was stirred under different conditions of time and temperature
according to the substitution of the compounds (Table
[2]
). Then, the mixture was poured into H2O and ice and extracted several times with Et2O and dried over anhyd Na2SO4. The solvent was evaporated and the residue taken up in CH2Cl2 and purified by thin layer chromatography (a 7:3 mixture of CH2Cl2-light PE as eluent). The product was crystallised from EtOH giving, in each case,
the 2,3-diarylxanthones 9a-f (yields described in Table
[2]
).
<A NAME="RD29105ST-15">15</A>
Physical Data of 2,3-Diphenylxanthone (
8a).
Mp 152-153 °C. 1H NMR (300.13 MHz, CDCl3): δ = 7.18-7.29 (m, 10 H, 2,3-C6
H
5), 7.41 (dt, 1 H, J = 7.5, 1.0 Hz, H-7), 7.53 (dd, 1 H, J = 8.4, 0.8 Hz, H-5), 7.57 (s, 1 H, H-4), 7.75 (dt, 1 H, J = 7.8, 1.6 Hz, H-6), 8.38 (dd, 1 H, J = 7.9, 1.6 Hz, H-8), 8.38 (s, 1 H, H-1). 13C NMR (75.47 MHz, CDCl3): δ = 118.0 (C-5), 119.5 (C-4), 120.7 (C-9a), 121.9 (C-8a), 124.0 (C-7), 126.8 (C-8),
126.9 (C-4′), 127.6 (C-4′′), 128.0 (C-2′,6′), 128.1 (C-3′′,5′′), 128.4 (C-1), 129.6
(C-2′′,6′′), 129.9 (C-3′,5′), 134.8 (C-6), 137.0 (C-1′), 139.8 (C-2), 139.9 (C-1′′),
147.6 (C-3), 155.2 (C-4a), 156.3 (C-4b), 177.0 (C-9). MS (EI): m/z (rel. int.) = 348 (100) [M+•], 347 (45), 333 (14), 318 (8), 305 (4), 289 (15), 276 (4), 228 (8), 226 (8), 213
(5), 174 (9), 145 (4), 77 (3). HRMS (EI): m/z calcd for C25H16O2: 348.1150; found: 348.1158.
<A NAME="RD29105ST-16">16</A>
Physical Data of 2,3-Diphenyl-3,4-dihydroxanthone (
10a).
1H NMR (300.13 MHz, CDCl3): δ = 3.01 (dd, 1 H, J = 17.4, 1.5 Hz, H-4
trans
), 3.67 (dd, 1 H, J = 17.4, 9.0 Hz, H-4
cis
), 4.31 (dd, 1 H, J = 9.0, 1.5 Hz, H-3), 7.19-7.30 (m, 8 H, H-2′,3′,4′,5′,6′,3′′,4′′,5′′), 7.32-7.41
(m, 2 H, H-5,7), 7.46-7.50 (m, 2 H, H-2′′,6′′), 7.56 (s, 1 H, H-1), 7.60 (dt, 1 H,
J = 7.8, 1.6 Hz, H-6), 8.29 (dd, 1 H, J = 7.9, 1.6 Hz, H-8). 13C NMR (75.47 MHz, CDCl3): δ = 36.7 (C-4), 41.7 (C-3), 116.8 (C-1), 116.9 (C-9a), 118.0 (C-5), 123.9 (C-8a),
125.1 (C-7), 125.7 (C-2′′,6′′), 126.2 (C-8), 127.2 (C-4′), 127.4 (C-2′,6′), 127.6
(C-4′′), 128.5 (C-3′′,5′′), 129.0 (C-3′,5′), 133.0 (C-6), 135.3 (C-1′′), 139.1 (C-1′),
140.7 (C-2), 155.9 (C-4b), 162.5 (C-4a), 174.2 (C-9). MS (FAB+): m/z (rel. int.) = 351 (37) [M + H]+, 212 (8), 77 (19). HRMS (EI): m/z calcd for C25H18O2: 350.1307; found: 350.1315.
<A NAME="RD29105ST-17A">17a</A>
Clarke DS.
Gabbutt CD.
Hepworth JD.
Heron BM.
Tetrahedron Lett.
2005,
46:
5515
<A NAME="RD29105ST-17B">17b</A>
de Meijere A.
Schelper M.
Knoke M.
Yucel B.
Sünnemann HW.
Scheurich RP.
Arve L.
J. Organomet. Chem.
2003,
687:
249
<A NAME="RD29105ST-18">18</A>
Santos, C. M. M.; Silva, A. M. S.; Cavaleiro, J. A. S. unpublished results.
<A NAME="RD29105ST-19">19</A>
Physical Data of 3-Phenyl-2-(4-methoxyphenyl)xanthone (
8b).
Mp 123-125 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.79 (s, 3 H, 4′-OCH
3), 6.77 (d, 2 H, J = 8.8 Hz, H-3′,5′), 7.09 (d, 2 H, J = 8.8 Hz, H-2′,6′), 7.20-7.24 (m, 2 H, H-2′′,6′′), 7.26-7.30 (m, 3 H, H-3′′,4′′,5′′),
7.39 (dt, 1 H, J = 7.8, 0.9 Hz, H-7), 7.51 (d, 1 H, J = 8.0 Hz, H-5), 7.53 (s, 1 H, H-4), 7.73 (dt, 1 H, J = 8.0, 1.6 Hz, H-6), 8.34 (s, 1 H, H-1), 8.37 (dd, 1 H, J = 7.8, 1.6 Hz, H-8). 13C NMR (75.47 MHz, CDCl3): δ = 55.2 (4′-OCH3), 113.4 (C-3′,5′), 118.0 (C-5), 119.5 (C-4), 120.7 (C-9a), 121.9 (C-8a), 123.9 (C-7),
126.7 (C-8), 127.5 (C-4′′), 128.1 (C-1), 128.2 (C-3′′,5′′), 129.6 (C-2′′,6′′), 131.0
(C-2′,6′), 132.1 (C-1′), 134.7 (C-6), 136.7 (C-2), 140.0 (C-1′′), 147.5 (C-3), 155.0
(C-4a), 156.3 (C-4b), 158.6 (C-4′), 177.0 (C-9). MS (EI): m/z (rel. int.) = 378 (100) [M+•], 363 (12), 347 (9), 334 (7), 318 (3), 305 (9), 292 (2), 276 (4), 263 (2), 213 (3),
189 (5), 173 (3), 167 (5), 138 (3), 92 (2), 77 (2). Anal. Calcd for C26H18O3: C, 82.52; H, 4.79. Found: C, 82.23; H, 4.94.
<A NAME="RD29105ST-20">20</A>
Physical Data of 3-(4-Benzyloxyphenyl)-2-(3,4-di-methoxyphenyl)-3,4-dihydroxanthone
(
10f).
1H NMR (300.13 MHz, CDCl3): δ = 2.95 (dd, 1 H, J = 17.3, 1.5 Hz, H-4
trans
), 3.61 (dd, 1 H, J = 17.3, 8.4 Hz, H-4
cis
), 3.83 and 3.84 (2 s, 6 H, 3′,4′-OCH
3), 4.23 (d, 1 H, J = 8.3 Hz, H-3), 4.94 (s, 2 H, 4′′-OCH
2C6H5), 6.74 (d, 1 H, J = 8.5 Hz, H-5′), 6.84 (d, 2 H, J = 8.7 Hz, H-3′′,5′′), 6.97 (dd, 1 H, J = 8.5, 2.1 Hz, H-6′), 7.09 (d, 1 H, J = 2.1 Hz, H-2′), 7.21 (d, 2 H, J = 8.7 Hz, H-2′′,6′′), 7.28-7.39 (m, 7 H, H-5,7 and H-2,3,4,5,6 of 4′′-OCH2C6
H
5), 7.44 (s, 1 H, H-1), 7.57 (dt, 1 H, J = 7.8, 1.6 Hz, H-6), 8.28 (dd, 1 H, J = 7.9, 1.6 Hz, H-8). 13C NMR (75.47 MHz, CDCl3): δ = 36.7 (C-4), 41.1 (C-3), 55.8 (3′,4′-OCH3), 69.9 (4′′-OCH2C6H5), 108.7 (C-2′), 110.8 (C-5′), 114.8 (C-1), 115.2 (C-3′′,5′′), 116.9 (C-9a), 118.0
(C-5), 118.3 (C-6′), 123.8 (C-8a), 125.0 (C-7), 126.1 (C-8), 125.7 (C-2,6 of 4′′-OCH2
C
6H5), 127.9 (C-4 of 4′′- OCH2
C
6H5), 128.3 (C-2′′,6′′), 128.5 (C-3,5 of 4′′-OCH2
C
6H5), 132.0 (C-1′), 133.0 (C-6), 133.1 (C-1′′), 135.5 (C-2), 136.9 (C-1 of 4′′-OCH2
C
6H5), 148.7 and 148.8 (C-3′,4′), 155.8 (C-4b), 157.9 (C-4′′), 162.3 (C-4a), 174.2 (C-9).
HRMS (EI): m/z calcd for C32H24O3: 456.1725; found: 456.1735.
<A NAME="RD29105ST-21">21</A>
The relative stereochemistry of protons H-3 and H-4 is referred as cis and trans.