Int J Sports Med 2007; 28(4): 295-299
DOI: 10.1055/s-2006-924361
Physiology

© Georg Thieme Verlag KG Stuttgart · New York

Loss of Motor Control and/or Loss of Consciousness during Breath-Hold Competitions

P. Lindholm1
  • 1Department of Physiology and Pharmacology, Section of Environmental Physiology, Karolinska Institutet, Stockholm, Sweden
Further Information

Publication History

Accepted after revision: May 20, 2006

Publication Date:
06 October 2006 (online)

Abstract

Since the first official world championships in breath-hold diving (1996), a sport has developed where the athletes compete in various disciplines of breath-hold diving. One of the rules is that the diver should surface from a dive without showing any signs of hypoxia. Depending on the severity of hypoxia, a diver may suffer disqualifying signs such as loss of consciousness (LOC) or loss of motor control (LMC), the latter including signs such as confusion, affected postural control, spasms or speech problems. Data was collected from the results of the major international competitions following AIDA guidelines (Association International pour le Dévelopment de l'Apnée) in 1998, 2001 - 2004. The data was analyzed for frequency of LOC and LMC during constant weight diving and during static apnea. In constant weight diving, the diver swims down (and up) as deeply as possible along a vertically suspended rope (current record 105 m). In static apnea, the diver strives for maximum duration, floating motionless face down in a pool (current record 8.58 min). A total of 601 static apnea (SA) performances and 596 constant weight dives were judged in the six competitions. On average, 10 % of SA, and 11 % of CW performances were disqualified due to signs of hypoxia. For the competitions in 2002 - 2004, a distinction was made in the rules between LOC and LMC; of a total number of 355 SA performances, 1.1 % resulted in LOC, while 9.6 % resulted in LMC. For CW, the number was 344 with 6.1 % LOC and 6.1 % LMC. Despite the relatively high incidence of dramatic signs, it is noteworthy that there have been no reports of fatal accidents or permanent injuries from any of the above-mentioned competitions. This descriptive paper shows a relatively high incidence of disqualifications due to signs of hypoxia in breath-hold competitions 1998 - 2004.

References

  • 1 Craig Jr A B. Causes of loss of consciousness during underwater swimming.  J Appl Physiol. 1961;  16 583-586
  • 2 Craig Jr A B. Summary of 58 cases of loss of consciousness during underwater swimming and diving.  Med Sci Sports. 1976;  8 171-175
  • 3 Ernsting J, Sharp G R, Harding R M. Hypoxia and hyperventilation. Ernsting J, King PF Aviation Medicine. Cambridge; Butterworths 1988: 45-59
  • 4 Howard P, Leathart G L, Dornhorst A C, Sharpey-Schafer E P. The mess trick and the fainting lark.  Br Med J. 1951;  4728 382-384
  • 5 Jones D R. A review of central nervous system effects of G-induced loss of consciousness on volunteer subjects.  Aviat Space Environ Med. 1991;  62 624-627
  • 6 Kohshi K, Wong R M, Abe H, Katoh T, Okudera T, Mano Y. Neurological manifestations in Japanese Ama divers.  Undersea Hyperb Med. 2005;  32 11-20
  • 7 Lanphier E H, Rahn H. Alveolar gas exchange in breath-hold diving.  J Appl Physiol. 1963;  18 471-477
  • 8 Lempert T, Bauer M, Schmidt D. Syncope: a videometric analysis of 56 episodes of transient cerebral hypoxia.  Ann Neurol. 1994;  36 233-237
  • 9 Lindholm P, Gennser M. Aggravated hypoxia during breath-holds after prolonged exercise.  Eur J Appl Physiol. 2005;  93 701-707
  • 10 Lindholm P, Nordh J, Linnarsson D. Role of hypoxemia for the cardiovascular responses to apnea during exercise.  Am J Physiol. 2002;  283 R1227-R1235
  • 11 Lindholm P, Nyren S. Studies on inspiratory and expiratory glossopharyngeal breathing in breath-hold divers employing magnetic resonance imaging and spirometry.  Eur J Appl Physiol. 2005;  94 646-651
  • 12 Liner M H, Ferrigno M, Lundgren C E. Alveolar gas exchange during simulated breath-hold diving to 20 m.  Undersea Hyperb Med. 1993;  20 27-38
  • 13 Lutz P L, Nilsson G E, Prentice H M. The brain in crisis. The Brain Without Oxygen. Dordrecht; Kluwer Academic Publishers 2003: 61
  • 14 McCrory P, Matser E, Cantu R, Ferrigno M. Sports neurology.  Lancet Neurol. 2004;  3 435-440
  • 15 Muth C M, Radermacher P, Pittner A, Steinacker J, Schabana R, Hamich S, Paulat K, Calzia E. Arterial blood gases during diving in elite apnea divers.  Int J Sports Med. 2003;  24 104-107
  • 16 Pan A W, He J, Kinouchi Y, Yamaguchi H, Miyamoto H. Blood flow in the carotid artery during breath-holding in relation to diving bradycardia.  Eur J Appl Physiol. 1997;  75 388-395
  • 17 Raichle M E, Hornbein T F. The high-altitude brain. Hornbein TF, Schoene RB High Altitude: An Exploration of Human Adaptation. New York; Marcel Dekker, Inc. 2001: 409-410
  • 18 Ridgway L, McFarland K. Apnea diving: long-term neurocognitive sequelae of repeated hypoxemia.  Clin Neuropsychol. 2006;  20 160-176
  • 19 Siesjö B K. CNS tolerance to asphyxia. Lundgren CEG, Ferrigno M The Physiology of Breath-Hold Diving. Bethesda, Maryland; Undersea and Hyperbaric Medical Society 1987: 44-61
  • 20 Simon R P. CNS response to hypoxia. Sutton JR, Houston CS, Coates G Hypoxia and the Brain. Proceedings of the 9th International Hypoxia Symposium. Burlington, VT; Queen City Printers 1995: 1-7
  • 21 Uguccioni D, Pollock N. Results of Divers Alert Network diving incident report survey. Undersea Hyperbaric Medical Society. Las Vegas: Annual Meeting. 2005
  • 22 Van Lieshout J J, Wieling W, Karemaker J M, Secher N H. Syncope, cerebral perfusion, and oxygenation.  J Appl Physiol. 2003;  94 833-848
  • 23 Whinnery J E. Medical considerations for human exposure to acceleration-induced loss of consciousness.  Aviat Space Environ Med. 1991;  62 618-623

Dr. Peter Lindholm

Section of Environmental Physiology
Department of Physiology and Pharmacology
Karolinska Institutet
Berzelius väg 13

17177 Stockholm

Sweden

Phone: + 46 8 52 48 68 79

Fax: + 46 8 33 97 02

Email: peter.lindholm@ki.se