Horm Metab Res 2006; 38(2): 106-111
DOI: 10.1055/s-2006-925128
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Metformin Increases Insulin Sensitivity and Plasma β-endorphin in Human Subjects

H.-Y.  Ou1, 2 , J.-T.  Cheng3 , E.  H.  Yu1 , T.-J.  Wu1
  • 1The Division of Endocrinology and Metabolism, Department of Internal Medicine, Tainan, Taiwan
  • 2Institute of Clinical Medicine, College of Medicine, Tainan, Taiwan
  • 3Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
Further Information

Publication History

Received 23 May 2005

Accepted after revision 25 October 2005

Publication Date:
08 March 2006 (online)

Abstract

Metformin has been widely used in clinical type 2 diabetes treatment and prevention. The present study was designed to explore the effect on people with a sedentary lifestyle at therapeutic doses. Twenty-two physically-inactive volunteers with normal glucose tolerance were studied. Escalating doses of metformin in low-dose (250 mg), intermediate-dose (500 mg), and high-dose (750 mg) treatment three times per day were administrated into each subject for a three-week treatment period. Fasting plasma glucose, A1C, HOMA-IR for insulin resistance, lipid profile, and plasma β-endorphin-like immunoreactivity (BER) were measured before treatment and weekly at the end of each dosing period. Metformin significantly reduced fasting plasma glucose and HOMA-IR in healthy humans after receiving this treatment at therapeutic doses including low-dose (5 %, 17 %), intermediate-dose (6 %, 25 %) and high-dose treatment (6 %, 21 %). Plasma BER was also increased from 135.46 ± 61.73 pg/ml to 137.52 ± 66.11 pg/ml by low-dosing (p = 0.39), to 139.17 ± 64.08 pg/ml by intermediate-dosing (p = 0.32), and to 149.59 ± 63.32 pg/ml by high-dosing (p < 0.05). Also, serum cholesterol decreased significantly using metformin at therapeutic doses including low-dose (4 %), intermediate-dose (8 %) and high-dose treatment (7 %). However, metformin failed to modify levels of serum HDL-cholesterol and C-reactive protein (CRP) in healthy subjects. Also, the reduction of serum cholesterol by metformin did not correlate to the increase in insulin sensitivity. In conclusion, metformin causes a significant parallel increase in insulin sensitivity and plasma β-endorphin level in human subjects.

References

  • 1 Reaven G M, Chen Y D. Insulin resistance, its consequences, and coronary heart disease. Must we choose one culprit?.  Circulation. 1996;  93 1780-1783
  • 2 Hawley J A. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance.  Diabetes Metab Res Rev. 2004;  20 383-393
  • 3 Diabetes Prevention Program Research Group . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med. 2002;  346 393-403
  • 4 Olefsky J M, Garvey W T, Henry R R, Brillon D, Matthaei S, Freidenberg G R. Cellular mechanisms of insulin resistance in non-insulin-dependent (type II) diabetes.  Am J Med. 1988;  85 86-105
  • 5 Cheng J T, Liu I M, Hsu C F. Rapid induction of insulin resistance in opioid mu-receptor knock-out mice.  Neurosci Lett. 2003;  339 139-142
  • 6 Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T. Infusion of β-endorphin improves insulin resistance in fructose-fed rats.  Horm Metab Res. 2004;  36 571-577
  • 7 Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T. Mediation of beta-endorphin in exercise-induced improvement in insulin resistance in obese Zucker rats.  Diabetes Metab Res Rev. 2005;  21 75-182
  • 8 Inzucchi S E, Maggs D G, Spollett G R, Page S L, Rife F S, Walton V, Shulman G I. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus.  N Engl J Med. 1998;  338 867-872
  • 9 Hundal R S, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi S E, Schumann W C, Petersen K F, Landau B R, Shulman G I. Mechanism by which metformin reduces glucose production in type 2 diabetes.  Diabetes. 2000;  49 2063-2069
  • 10 Stumvoll M, Nurjhan N, Periello G, Dailey G, Gerich J E. Metabolic effects of metformin in non-insulin dependent diabetes mellitus.  N Engl J Med. 1995;  333 550-554
  • 11 Nestler J E, Jakubowicz D J, Evans W S, Pasquali R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome.  N Engl J Med. 1998;  338 1876-1880
  • 12 Vandermolen D T, Ratts V S, Evans W S, Stovall D W, Kauma S W, Nestler J E. Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic ovary syndrome who are resistant to clomiphene citrate alone.  Fertil Steril. 2001;  75 310-315
  • 13 Glueck C J, Fontaine R N, Wang P, Subbiah M T, Weber K, Illig E, Streicher P, Sieve-Smith L, Tracy T M, Lang J E, McCullough P. Metformin reduces weight, centripetal obesity, insulin, leptin, and low density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30.  Metabolism. 2001;  50 856-861
  • 14 Kay J P, Alemzadeh R, Langley G, D'Angelo L, Smith P, Holshouser S. Beneficial effects of metformin in normoglycemic morbidly obese adolescents.  Metabolism. 2001;  50 1457-1461
  • 15 De Jager J, Kooy A, Lehert P, Bets D, Wulffele M G, Teerlink T, Scheffer P G, Schalkwijk C G, Donker A J, Stehouwer C D. Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial.  J Intern Med. 2005;  257 100-109
  • 16 Charles M A, Morange P, Eschwege E, Andre P, Vague P, Juhan-Vague I. Effect of weight change and metformin on fibrinolysis and the von Willebrand factor in obese nondiabetic subjects: the BIGPRO1 Study. Biguanides and the Prevention of the Risk of Obesity.  Diabetes Care. 1998;  21 1967-1972
  • 17 Charles M A, Eschwege E, Grandmottet P, Isnard F, Cohen J M, Bensoussan J L, Berche H, Chapiro O, Andre P, Vague P, Juhan-Vague I, Bard J M, Safar M. Treatment with metformin of non-diabetic men with hypertension, hypertriglyceridaemia and central fat distribution: the BIGPRO 1.2 trial.  Diabetes Metab Res Rev. 2000;  16 2-7
  • 18 Iannello S, Camuto M, Cavaleri A, Milazzo P, Pisano M G, Bellomia D, Belfiore F. Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids.  Diabetes, Obesity & Metabolism. 2004;  6 8-15
  • 19 Binnert C, Seematter G, Tappy L, Giusti V. Effect of metformin on insulin sensitivity and insulin secretion in female obese patients with normal glucose tolerance.  Diabetes & Metabolism. 2003;  29 125-132
  • 20 Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes.  Pediatrics. 2001;  107 E55
  • 21 Chen J J, Huang L H. Development and verification of validity and reliability of the IPAQ Taiwan version.  Int J Behavioral Medicine. 2004;  11 141
  • 22 Robert F, Fendri S, Hary L, Lacroix C, Andrejak M, Lalau J D. Kinetics of plasma and erythrocyte metformin after acute administration in healthy subjects.  Diabetes Metab. 2003;  29 279-283
  • 23 Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 24 Dowse G K, Gareeboo H, Zimmet P Z, Alberti K G, Tuomilehto J, Fareed D, Brissonnette L G, Finch C F. High prevalence of NIDDM and impaired glucose tolerance in Indian, Creole, and Chinese Mauritians.  Diabetes. 1990;  39 390-396
  • 25 Kriska A M, La Porte R E, Pettitt D J, Charles M A, Nelson R G, Kuller L H, Bennett P H, Knowler W C. The association of physical activity with obesity, fat distribution and glucose intolerance in Pima Indians.  Diabetologia. 1993;  36 863-869
  • 26 Taylor R, Ram P, Zimmet P, Raper L R, Ringrose H. Physical activity and prevalence of diabetes in Melanesian and Indian men in Fiji.  Diabetologia. 1984;  27 578-582
  • 27 Cederholm J, Wibell L. Glucose tolerance and physical activity in a health survey of middle-aged subjects.  Acta Med Scand. 1985;  217 373-378
  • 28 Lindgarde F, Saltin B. Daily physical activity, work capacity and glucose tolerance in lean and obese normoglycaemic middle-aged men.  Diabetologia. 1981;  20 134-138
  • 29 Pereira M A, Kriska A M, Joswiak M L, Dowse G K, Collins V R, Zimmet P Z, Gareeboo H, Chitson P, Hemraj F, Purran A, Fareed D. Physical inactivity and glucose intolerance in the multiethnic island of Mauritius.  Med Sci Sports Exerc. 1995;  27 1626-1634
  • 30 Wang J T, Ho L T, Tang K T, Wang L M, Chen Y D, Reaven G M. Effect of habitual physical activity on age-related glucose intolerance.  J Am Geriatr Soc. 1989;  37 203-209
  • 31 Regensteiner J G, Shetterly S M, Mayer E J, Eckel R H, Haskell W L, Baxter J, Hamman R F. Relationship between habitual physical activity and insulin area among individuals with impaired glucose tolerance. The San Luis Valley Diabetes Study.  Diabetes Care. 1995;  18 490-497
  • 32 King D S, Dalsky G P, Staten M A, Clutter W E, Van Houten D R, Holloszy J O. Insulin action and secretion in endurance-trained and untrained humans.  J Appl Physiol. 1987;  63 2247-2252
  • 33 Rodnick K J, Haskell W L, Swislocki A L, Foley J E, Reaven G M. Improved insulin action in muscle, liver, and adipose tissue in physically trained human subjects.  Am J Physiol. 1987;  253 E489-E495
  • 34 Gan S K, Kriketos A D, Ellis B A, Thompson C H, Kraegen E W, Chisholm D J. Changes in Aerobic Capacity and Visceral Fat but not Myocyte Lipid Levels Predict Increased Insulin Action After Exercise in Overweight and Obese Men.  Diabetes Care. 2003;  26 1706-1713
  • 35 Goodpaster B H, Katsiaras A, Kelley D E. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity.  Diabetes. 2003;  52 2191-2197
  • 36 Hickey M S, Gavigan K E, McCammon M R, Tyndall G L, Pories W J, Israel R G, Houmard J A. Effects of 7 days of exercise training on insulin action in morbidly obese men.  Clin Exerc Physiol. 1999;  1 24-28
  • 37 Hughes V A, Fiatarone M A, Fielding R A, Kahn B B, Ferrara C M, Shepherd P, Fisher E C, Wolfe R R, Elahi D, Evans W J. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance.  Am J Physiol Endocrin Metab. 1993;  264 E855-E862
  • 38 Bruce C R, Kriketos A D, Cooney G J, Hawley J A. Dissociation of muscle triglyceride content and insulin action after exercise training in patients with type 2 diabetes.  Diabetolgia. 2004;  47 23-30
  • 39 Dela F, Larsen J J, Mikines K J, Ploug T, Petersen L N, Galbo H. Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training.  Diabetes. 1995;  44 1010-1020
  • 40 Kang J, Robertson R J, Hagberg J M, Kelley D E, Goss F L, Da Silva S G, Suminski R R, Utter A C. Effect of exercise intensity on glucose and insulin metabolism in obese individuals and obese NIDDM patients.  Diabetes Care. 1996;  19 341-349
  • 41 Poirier P, Tremblay A, Broderick T, Catellier C, Tancrede G, Nadeau A. Impact of moderate aerobic exercise training on insulin sensitivity in type 2 diabetic men treated with oral hypoglycemic agents: is insulin sensitivity enhanced only in nonobese subjects?.  Med Sci Monit. 2002;  8 CR59-CR65
  • 42 Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman M F, Goodyear L J, Moller D E. Role of AMP-activated protein kinase in mechanism of metformin action.  J Clin Invest. 2001;  108 1167-1174
  • 43 Musi N, Hirshman M F, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson J M, Ljunqvist O, Efendic S, Moller D E, Thorell A, Goodyear L J. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes.  Diabetes. 2002;  51 2074-2081
  • 44 Bloomgarden Z T. American Diabetes Association Annual Meeting, 1998. Insulin resistance, exercise, and obesity.  Diabetes Care. 1999;  22 517-522
  • 45 Clark D O. Physical activity efficacy and effectiveness among older adults and minorities.  Diabetes Care. 1997;  20 1176-1182
  • 46 Park H, Kaushik V K, Constant S, Prentki M, Przybytkowski E, Ruderman N B, Saha A K. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise.  J Biol Chem. 2002;  277 32 571-32 577
  • 47 Ruderman N B, Cacicedo J M, Itani S, Yagihashi N, Saha A K, Ye J M, Chen K, Zou M, Carling D, Boden G, Cohen R A, Keaney J, Kraegen E W, Ido Y. Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes.  Biochem Soc Trans. 2003;  31 202-206
  • 48 Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman N B, Cohen R A. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells.  J Biol Chem. 2004;  279 47 898-47 905
  • 49 Gunton J E, Delhanty P J, Takahashi S, Baxter R C. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2.  J Clin Endocrinol Metab. 2003;  88 1323-1332
  • 50 Cheng J T, Liu I M, Tzeng T F, Tsai C C, Lai T Y. Plasma glucose lowering effect of beta-endorphin in streptozotocin-induced diabetic rats.  Horm Metab Res. 2002;  34 570-576
  • 51 Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T. Infusion of beta-endorphin improves insulin resistance in fructose-fed rats.  Horm Metab Res. 2004;  36 571-577
  • 52 Curry D L, Li C H. Stimulation of insulin secretion by beta-endorphin (1 - 27 and 1 - 31).  Life Sci. 1987;  40 2053-2058
  • 53 Locatelli A, Spotti D, Caviezel F. The regulation of insulin and glucagon secretion by opiates: a study with naloxone in healthy humans.  Acta Diabetol Lat. 1985;  22 25-31
  • 54 Cheng J T, Liu I M, Chi T C, Tzeng T F, Lu F H, Chang C J. Plasma glucose-lowering effect of tramadol in streptozotocin-induced diabetic rats.  Diabetes. 2001;  50 2815-2821
  • 55 Liu I M, Chen W C, Cheng J T. Mediation of beta-endorphin by isoferulic acid to lower plasma glucose in streptozotocin-induced diabetic rats.  J Pharmacol Exp Ther. 2003;  307 1196-1204
  • 56 Cheng J T, Liu I M, Tzeng T F, Chen W C, Hayakawa S, Yamamoto T. Release of beta-endorphin by caffeic acid to lower plasma glucose in streptozotocin-induced diabetic rats.  Horm Metab Res. 2003;  35 251-258
  • 57 Wilcock C, Bailey C J. Accumulation of metformin by tissues of the normal and diabetic mouse.  Xenobiotica. 1999;  24 49-57
  • 58 Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine.  Biochem Pharmacol. 2000;  59 887-890

T. J. Wu, MD

Department of Internal Medicine · College of Medicine · National Cheng Kung University

138, Sheng-Li Rd. · Tainan · Taiwan 70101

Phone: +886(6)235-3535 ext 5387

Fax: +886(6)302-8130 ·

Email: djwu@mail.ncku.edu.tw