References and Notes
1 For review, see: Katritzky AR.
Rachwal S.
Rachwal B.
Tetrahedron
1996,
52:
15031
For examples, see:
2a
Jacquemond-Collet I.
Benoit-Vical F.
.
Valentin A.
Stanislas E.
Mallié M.
Fourasté I.
Planta Med.
2002,
68:
68
2b
Wallace OB.
Lauwers KS.
Jones SA.
Dodge JA.
Bioorg. Med. Chem. Lett.
2003,
13:
1907
2c
Di Fabio R.
Tranquillini E.
Bertani B.
Alvaro G.
Micheli F.
Sabbatini F.
Pizzi MD.
Pentassuglia G.
Pasquarello A.
Messeri T.
Donati D.
Ratti E.
Arban R.
Dal Forno G.
Reggiani A.
Barnaby RJ.
Bioorg. Med. Chem. Lett.
2003,
13:
3863
2d
Asolkar RN.
Schröder D.
Heckmann R.
Lang S.
Wagner-Döbler I.
Laatsch H.
J. Antibiot.
2004,
57:
17
2e
Lombardo LJ.
Camuso A.
Clark J.
Fager K.
Gullo-Brown J.
Hunt JT.
Inigo I.
Kan D.
Koplowitz B.
Lee F.
McGlinchey K.
Qian LG.
Ricca C.
Rovnyak G.
Traeger S.
Tokarski J.
Williams DK.
Wu LI.
Zhao YF.
Manne V.
Bhide RS.
Bioorg. Med. Chem. Lett.
2005,
15:
1895
2f
Nallan L.
Bauer KD.
Bendale P.
Rivas K.
Yokoyama K.
Horney CP.
Pendyala PR.
Floyd D.
Lombardo LJ.
Williams DK.
Hamilton A.
Sebti S.
Windsor WT.
Weber PC.
Buckner FS.
Chakrabarti D.
Gelb MH.
Van Voorhis WC.
J. Med. Chem.
2005,
48:
3704
For some recent publications, see:
3a
Fujita K.
Yamaguchi R.
Synlett
2005,
560
3b
Lam KH.
Xu LJ.
Feng LC.
Fan QH.
Lam FL.
Lo WH.
Chan ASC.
Adv. Synth. Catal.
2005,
347:
1755
3c
Xu LK.
Lam KH.
Ji JX.
Wu J.
Fan QH.
Lo WH.
Chan ASC.
Chem. Commun.
2005,
1390
3d
Lu SM.
Han XW.
Zhou YG.
Adv. Synth. Catal.
2004,
346:
909
3e
Yang PY.
Zhou YG.
Tetrahedron: Asymmetry
2004,
15:
1145
3f
Wang WB.
Lu SM.
Yang PY.
Han XW.
Zhou YG.
J. Am. Chem. Soc.
2003,
125:
10536
3g
Michael JP.
Nat. Prod. Rep.
2005,
22:
627
4a
Ranu BC.
Jana U.
Sarkar A.
Synth. Commun.
1998,
28:
485
4b
Srikrishna A.
Reddy TJ.
Viswajanani R.
Tetrahedron
1996,
52:
1631
4c
Nose A.
Kudo T.
Chem. Pharm. Bull.
1984,
32:
2421
5
Rueping M.
Azap C.
Sugiono E.
Theissmann T.
Synlett
2005,
2367
6a
Rueping M.
Sugiono E.
Azap C.
Theissmann T.
Bolte M.
Org. Lett.
2005,
7:
3781
6b For a subsequent optimization of this procedure, see: Hoffmann S.
Seayad A.
List B.
Angew. Chem. Int. Ed.
2005,
44:
7424 ; Angew. Chem. 2005, 117, 7590
6c
Storer RI.
Carrera DE.
Ni Y.
MacMillan DWC.
J. Am. Chem. Soc.
2006,
128:
84
For recent conjugate reductions of α,β-unsaturated aldehydes, see:
7a
Yang JW.
Hechavarria Fonseca MT.
List B.
Angew. Chem. Int. Ed.
2004,
43:
6660 ; Angew. Chem. 2004, 116, 6829
7b
Yang JW.
Hechavarria Fonseca MT.
Vignola N.
List B.
Angew. Chem. Int. Ed.
2005,
44:
108 ; Angew. Chem. 2005, 117, 110
7c
Ouellet SG.
Tuttle JB.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
32
7d
Adolfsson H.
Angew. Chem. Int. Ed.
2005,
44:
3340 ; Angew. Chem. 2005, 117, 3404
7e
Lui Z.
Han B.
Lui Q.
Zhang W.
Yang L.
Lui ZL.
Yu W.
Synlett
2005,
1579
7f
Garden SJ.
Guimarães CRW.
Corréa B.
Oliveira CAF.
Pinto AC.
Alencastro RB.
J. Org. Chem.
2003,
68:
8815
8
General Procedure for the Brønsted Acid Catalyzed Transfer Hydrogenation of Quinolines.
In a typical experiment quinoline (20 mg), diphenyl phosphate (1 mol%) and Hantzsch dihydropyridine 2 (2.4 equiv) were suspended in benzene (2 mL) in a screw-capped vial and flushed with argon. The resulting mixture was allowed to stir at 60 °C for 12 h. The solvent was removed under reduced pressure and purification of the crude product by column chromatography on silica gel afforded the pure 1,2,3,4-tetrahydroquinoline. For representative examples, see:
7-Chloro-1,2,3,4-tetrahydro-4-phenylquinoline (6o): yield 19.3 mg, 94%. IR (KBr): 3412, 3396, 2919, 1604, 1492, 1089, 700 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.88-2.18 (m, 2 H, C-3H), 3.08-3.28 (m, 2 H, C-2H), 3.94 (br s, 1 H, NH), 4.01 (t, J = 6.1 Hz, 1 H, C-4H), 6.39-6.48 (m, 2 H, Ar), 6.56-6.59 (m, 1 H, Ar), 6.99-7.07 (m, 2 H, Ar), 7.09-7.27 (m, 3 H, Ar). 13C NMR (250 MHz, CDCl3): δ = 30.7, 38.9, 42.4, 113.4, 116.8, 121.7, 126.3, 128.4, 128.6, 131.5, 132.6, 145.9, 146.0. MS-ESI: m/z = 243.8 [M+], 245.8 [M+]. Anal. Calcd for C15H14ClN (243.73): C, 73.92; H, 5.79; N, 5.75. Found: C, 73.69; H, 5.54; N, 5.74.
1,2,3,4-Tetrahydro-4,7-diphenylquinoline (6p): yield 18.6 mg, 91%. IR (KBr): 3356, 3292, 3024, 2945, 2924, 1562, 1485, 1468, 1319, 758, 698 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.93-2.27 (m, 2 H, C-3H), 3.13-3.34 (m, 2 H, C-2H), 3.96 (br s, 1 H, NH), 4.10 (t, J = 6.1 Hz, 1 H, C-4H), 6.69-6.73 (m, 3 H, Ar), 7.10-7.38 (m, 8 H, Ar), 7.45-7.50 (m, 2 H, Ar). 13C NMR (250 MHz, CDCl3): δ = 31.2, 39.4, 42.7, 112.7, 116.2, 122.7, 126.2, 127.0, 128.4, 128.6, 128.7, 130.8, 140.4, 141.5, 145.2, 146.5. MS-ESI: m/z = 285.8 [M+]. Anal. Calcd for C21H19N (285.38): C, 88.38; H, 6.71; N, 4.91. Found: C, 88.11; H, 6.80; N, 4.79.
For reviews on chiral Brønsted acid catalysis, see:
9a
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
9b
Pihko PM.
Angew. Chem. Int. Ed.
2004,
43:
2062 ; Angew. Chem. 2004, 116, 2110
9c
Bolm C.
Rantanen T.
Schiffers I.
Zani L.
Angew. Chem. Int. Ed.
2005,
44:
1758 ; Angew. Chem. 2005, 117, 1788
For the use of chiral phosphoric acid catalysts, see:
9d
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566 ; Angew. Chem. 2004, 116, 1592
9e
Uraguchi D.
Terada M.
J. Am. Chem. Soc.
2004,
126:
5356
9f
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2004,
126:
11804
9g
Akiyama T.
Morita H.
Itoh J.
Fuchibe K.
Org. Lett.
2005,
7:
2583
9h
Akiyama T.
Saitoh Y.
Morita H.
Fuchibe K.
Adv. Synth. Catal.
2005,
347:
1523
9i
Uraguchi D.
Terada M.
J. Am. Chem. Soc.
2004,
126:
5356
9j
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2004,
126:
11804
9k
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2005,
127:
9360
9l
Rowland GB.
Zhang H.
Rowland EB.
Chennamadhavuni S.
Wang Y.
Antilla JC.
J. Am. Chem. Soc.
2005,
127:
15696
9m
Terada M.
Sorimachi K.
Uraguchi D.
Synlett
2006,
133
9n
Akiyama T.
Tamura Y.
Itoh J.
Morita H.
Fuchibe K.
Synlett
2006,
141
9o
Rueping M.
Sugiono E.
Azap C.
Angew. Chem. Int. Ed.
2006,
45:
2617 ; Angew. Chem.
2006,
118:
2679
10 An extension of this procedure to an asymmetric variant by employing a chiral phosphate catalyst has been achieved: Rueping M.
Antonchick AP.
Theissmann T.
Angew. Chem. Int. Ed.
2006,
45:
in press