Subscribe to RSS
DOI: 10.1055/s-2006-941560
A Pd-Mediated Approach to the Synthesis of an Unusual β-Hydroxytryptophan Amino Acid Constituent of Cyclomarin A
Publication History
Publication Date:
26 April 2006 (online)
Abstract
A synthetic approach based on a palladium-mediated vinylation of indole derivatives was established for the preparation of 5, a key intermediate in the synthesis of N-(tert-butoxycarbonyl)-l-1H-[(R)-1,1-dimethyl-2,3-epoxypropyl]-β-hydroxytryptophan ethyl ester (6). Unsatisfying yields were obtained using N-alkyl-3-haloderivatives. The best method proved to be the oxidative coupling on 3-unsubstituted indole derivative.
Key words
indoles - palladium - Heck reaction - marine natural product - Stille reaction
-
1a
Renner MK.Shen Y.-C.Cheng X.-C.Jensen PR.Frankmoelle W.Kauffmann CA.Fenical W.Lobkovsky E.Clardy J. J. Am. Chem. Soc. 1999, 121: 11273 -
1b
Fenical WH,Jacobs RS, andJensen PR. inventors; U.S. Patent 5,444,043. -
1c
Fenical WH,Jacobs RS, andJensen PR. inventors; U.S. Patent 5,593,960. - 2
Pazoles CJ, andSiegel SA. inventors; U.S. Patent 5,759,995. - 3
Waters B.Saxena G.Wanggui Y.Kau D.Wrigley S.Stokes R.Davies J. J. Antibiot. 2002, 55: 407 - 4
Sugiyama H.Shioiri T.Yokokawa F. Tetrahedron Lett. 2002, 43: 3489 - 5
Tarver JE.Joullié MM. J. Org. Chem. 2004, 69: 815 - 6
Tarver JE.Terranova KM.Joullié MM. Tetrahedron 2004, 60: 10277 - 7
Hajra S.Karmakar A. Tetrahedron Lett. 2004, 45: 3185 - 8
Hansen DB.Lewis AS.Gavalas SJ.Joullié MM. Tetrahedron: Asymmetry 2006, 17: 15 - 9
Della Sala G.Capozzo D.Izzo I.Giordano A.Iommazzo A.Spinella A. Tetrahedron Lett. 2002, 43: 8839 - 10
Pirrung MC.Li Z.Park K.Zhu J. J. Org. Chem. 2002, 67: 7919 - 11
Franck WC.Kim YC.Heck RF. J. Org. Chem. 1978, 43: 2947 - 12
Harrington PJ.Hegedus LS. J. Org. Chem. 1984, 49: 2657 -
13a
Ahaidar A.Fernández D.Danelón G.Cuevas C.Manzanares I.Albericio F.Joule JA.Álvarez M. J. Org. Chem. 2003, 68: 10020 -
13b
Ahaidar A.Fernández D.Pérez O.Danelón G.Cuevas C.Manzanares I.Albericio F.Joule JA.Álvarez M. Tetrahedron Lett. 2003, 44: 6191 -
13c
Álvarez M.Fernández D.Joule JA. Tetrahedron Lett. 2001, 42: 315 - 14
Sakamoto T.Kondo Y.Yasuhara A.Yamanaka H. Tetrahedron 1991, 47: 1877 - 15
Moritani I.Fujiwara Y. Tetrahedron Lett. 1967, 12: 1119 - 16
Jia C.Piao D.Oyamada J.Lu W.Kitamura T.Fujiwara Y. Science 1992, 287: 1992 - 17
Jia C.Lu W.Kitamura T.Fujiwara Y. Org. Lett. 1999, 1: 2097 - 18
Grimster NP.Gauntlett C.Godfrey CRA.Gaunt MJ. Angew. Chem. Int. Ed. 2005, 44: 3125 - 19
Capito E.Brown JM.Ricci A. Chem. Commun. 2005, 1854
References and Notes
Procedure for Pd(OAc) 2 -Catalyzed Oxidative Heck Coupling (Table 2, Entry 4). A mixture of indole 13 (90 mg, 0.35 mmol), Pd(OAc)2 (36 mg, 0.16 mmol), Cu(OAc)2 (0.318 g, 1.75 mmol) and ethyl acrylate (0.11 mL, 1.0 mmol) in dry DMF-DMSO 9:1 (10 mL) was deoxygenated and heated at 80 °C in a capped Schlenk tube. After 24 h, the reaction vessel was cooled to r.t. and CH2Cl2 (20 mL) was added. The organic phase was washed with H2O (3 × 30 mL) and the resulting aqueous phases were again extracted with CH2Cl2 (20 mL). The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo. Purification by flash chromatography (gradient elution with PE-Et2O mixtures from 100:0 to 1:1) afforded product 12 (87 mg, 70% yield) as a yellow oil and an additional product 19 (21 mg, 23% yield).
21Compound 12: [α]D 22 +12.3 (c 1.8, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.92 (1 H, m, indole H-4 or H-7), 7.90 (1 H, d, J = 16.0 Hz, β-acrylic CH), 7.70 (1 H, m, indole H-4 or H-7), 7.62 (1 H, s, indole H-2), 7.20-7.24 (2 H overlapped, m, indole H-5, H-6), 6.41 (1 H, d, J = 16.0 Hz, α-acrylic CH), 4.84 (1 H, dd, J = 7.0, 6.1 Hz, acetonide CH), 4.27 (2 H, q, J = 7.1 Hz, acrylate CH 2), 3.86 (1 H, dd, J = 8.9, 7.0 Hz, acetonide CH 2), 3.60 (1 H, dd, J = 8.9, 6.1 Hz, acetonide CH 2), 1.79 (3 H, s, CH 3), 1.72 (3 H, s, CH 3), 1.41 (3 H, m, acetonide CH 3), 1.35 (3 H, t, J = 7.1 Hz, acrylate CH 3), 1.34 (3 H, m, acetonide CH 3). 13C NMR (100 MHz, CDCl3): δ = 168.3, 138.0, 136.6, 130.8, 127.7, 122.3, 121.1, 120.7, 114.2, 112.7, 111.6, 110.3, 79.1, 65.3, 61.0, 60.0, 25.9, 24.7, 24.2, 23.5, 14.4. MS (EI, 70 eV, 250 °C): m/z = 357 [M+], 256. Anal. Calcd for C21H27NO4 (%): C, 70.56; H, 7.61; N, 3.92. Found: C, 70.27; H, 7.43; N, 3.92.
22Compound 19: 1H NMR (400 MHz, CDCl3): δ = 7.77 (1 H, m, indole H-4 or H-7), 7.76 (1 H, m, indole H-4 or H-7), 7.53 (1 H, s, indole H-2), 7.21 (1 H, m, indole H-5 or H-6), 7.13 (1 H, m, indole H-5 or H-6), 4.95 (1 H, dd, J = 7.0, 6.0 Hz, acetonide CH), 3.83 (1 H, dd, J = 8.9, 7.0 Hz, acetonide CH 2), 3.69 (1 H, dd, J = 8.9, 6.0 Hz, acetonide CH 2), 1.87 (3 H, s, CH 3), 1.79 (3 H, s, CH 3), 1.45 (3 H, m, acetonide CH 3), 1.37 (3 H, m, acetonide CH 3). 13C NMR (100 MHz, CDCl3) δ = 135.7, 129.1, 123.6, 121.3, 120.5, 119.2, 113.6, 110.1, 109.0, 79.5, 65.4, 60.3, 26.0, 25.1, 24.8, 23.2. MS (ES): m/z = 517 [M + H]+. Anal. Calcd for C32H40N2O4 (%): C, 74.39; H, 7.80; N, 5.42. Found: C, 74.37; H, 7.77; N, 5.39.
23Procedure for PdCl 2 -Catalyzed Oxidative Heck Coupling (Table 2, Entry 5). A mixture of indole 13 (78 mg, 0.30 mmol), PdCl2 (15 mg, 0.085 mmol), Cu(OAc)2 (0.168 g, 0.92 mmol) and ethyl acrylate (0.10 mL, 0.92 mmol) in dry MeCN (3.5 mL) was deoxygenated and heated at 40 °C in a capped Schlenk tube. After 24 h, the reaction vessel was cooled to r.t. Brine was added (25 mL) and the mixture was extracted with EtOAc (3 × 25 mL). The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo. Purification by flash chromatography (gradient elution with PE-Et2O mixtures from 8:2 to 4:6) afforded product 12 (92 mg, 86% yield).