Der Nuklearmediziner 2006; 29(3): 142-150
DOI: 10.1055/s-2006-942132
Funktionell-morphologische Kombinationsbildgebung

© Georg Thieme Verlag Stuttgart · New York

PET und PET/CT in der Diagnostik des Prostatakarzinoms

PET and PET/CT for Imaging of Prostate CancerB. Scher1 , M. Seitz2 , R. Tiling1 , W. Albinger1 , S. Banac1 , M. Scherr3 , S. Dresel1
  • 1Klinik und Poliklinik für Nuklearmedizin, Ludwig-Maximilians-Universität München
  • 2Urologische Klinik, Ludwig-Maximilians-Universität München
  • 3Institut für Klinische Radiologie, Ludwig-Maximilians-Universität München
Further Information

Publication History

Publication Date:
15 September 2006 (online)

Zusammenfassung

Dieser Übersichtsartikel befasst sich mit dem Nutzen der PET und PET/CT in der Diagnostik des Prostatakarzinoms. Die bisher am häufigsten verwendeten PET-Tracer zur Detektion von Prostatakarzinomen sind 11C-Acetat sowie 11C- oder 18F-markiertes Cholin. Die derzeit verfügbare Fachliteratur, die sich mit der Leistungsfähigkeit der PET und PET/CT in der Primärtumor- und Metastasendiagnostik des Prostatakarzinoms befasst, wird diskutiert. Darüber hinaus werden eigene vorläufige Studienergebnisse im Hinblick auf die Leistungsfähigkeit von 11C-Cholin-PET und -PET/CT in der Diagnostik von Patienten mit Verdacht auf ein Prostatakarzinom präsentiert. Die Prävalenz des Prostatakarzinoms lag bei den 43 in die Studie eingeschlossenen Patienten bei 55,8 %. PET und PET/CT zeigten hierbei in der Detektion des Primärkarzinoms eine Sensitivität von 88 % bei einer Spezifität von 63 %. Die Sensitivität in der Metastasendetektion lag in einer patientenbasierten Auswertung bei 77 %. Hierbei zeigten sich keine falsch-positiven Resultate. Die möglichen Vorteile und Limitationen kombinierter PET/CT-Geräte im Vergleich zu PET-Einzelgeräten werden ebenfalls erörtert. PET und PET/CT sind die derzeit einzigen bildgebenden Verfahren, die sowohl funktionelle Informationen über den Primärtumor als auch dessen Metastasen bereitstellen. Dies unterscheidet die PET von der MRT in Kombination mit der Magnetresonanzspektroskopie, einem konkurrierenden Verfahren. Unsere eigenen vorläufigen Daten, sowie die nach wie vor limitierte verfügbare wissenschaftliche Literatur legen nahe, dass PET und PET/CT sich in der Diagnostik des Prostatakarzinoms als nützlich erweisen könnten.

Abstract

This review article provides an overview of the current literature data regarding the value of PET and PET/CT for imaging of prostate cancer. Most widely used PET tracers for prostate cancer imaging are 11C-acetate and 11C- or 18F-labeled choline. Available literature data on the performance of PET and PET/CT in the detection of the primary malignancy as well as local or distant metastases are presented and discussed. In addition, our own preliminary results regarding the diagnostic efficacy of 11C-choline PET and PET/CT in 43 patients with suspected prostate cancer are provided. The prevalence of prostate cancer in this patient sample was 55.8 %. PET and PET/CT showed a sensitivity of 88 % with a specificity of 63 % in the detection of the primary prostate cancer. The sensitivity in the detection of metastatic spread was 77 % and no false-positives were found. The possible value and limitations of combined PET/CT systems when compared to stand alone PET scanners are discussed. PET and PET/CT is at present the single imaging modality providing functional information not only regarding the primary malignancy but also its metastases. This unique feature distinguishes PET from MRI complemented with magnetic resonance spectroscopy - a competing procedure. Our own results as well as the still limited literature data suggest, that PET and PET/CT may prove to be useful methods for imaging of prostate cancer.

Literatur

  • 1 Sarma A V, Schottenfeld D. Prostate cancer incidence, mortality, and survival trends in the United States: 1981-2001.  Semin Urol Oncol. 2002;  1 3-9
  • 2 Scardino P T. Early detection of prostate cancer.  Urol Clin North Am. 1989;  4 635-655
  • 3 Wefer A E, Hricak H, Vigneron D B, Coakley F V, Lu Y, Wefer J, Mueller-Lisse U, Carroll P R, Kurhanewicz J. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology.  J Urol. 2000;  2 400-404
  • 4 Cornud F, Belin X, Piron D, Chretien Y, Flam T, Casanova J M, Helenon O, Mejean A, Thiounn N, Moreau J F. Color Doppler-guided prostate biopsies in 591 patients with an elevated serum PSA level: impact on Gleason score for nonpalpable lesions.  Urology. 1997;  5 709-715
  • 5 Halpern E J, Verkh L, Forsberg F, Gomella L G, Mattrey R F, Goldberg B B. Initial experience with contrast-enhanced sonography of the prostate.  AJR Am J Roentgenol. 2000;  6 1575-1580
  • 6 Wijkstra H, Wink M H, de la Rosette J J. Contrast specific imaging in the detection and localization of prostate cancer.  World J Urol. 2004;  5 346-350
  • 7 Heuck A, Scheidler J, Sommer B, Graser A, Muller-Lisse U G, Massmann J. [MR imaging of prostate cancer].  Radiologe. 2003;  6 464-473
  • 8 Wilkinson B A, Hamdy F C. State-of-the-art staging in prostate cancer.  BJU Int. 2001;  5 423-430
  • 9 Smith Jr  J A, Scardino P T, Resnick M I, Hernandez A D, Rose S C, Egger M J. Transrectal ultrasound versus digital rectal examination for the staging of carcinoma of the prostate: results of a prospective, multi-institutional trial.  J Urol. 1997;  3 902-906
  • 10 Liebross R H, Pollack A, Lankford S P, Zagars G K, Eschenbach A C von, Geara F B. Transrectal ultrasound for staging prostate carcinoma prior to radiation therapy: an evaluation based on disease outcome.  Cancer. 1999;  7 1577-1585
  • 11 Engelbrecht M R, Jager G J, Laheij R J, Verbeek A L, van Lier H J, Barentsz J O. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis.  Eur Radiol. 2002;  9 2294-2302
  • 12 Mueller-Lisse U, Mueller-Lisse U, Scheidler J, Klein G, Reiser M. Reproducibility of image interpretation in MRI of the prostate: application of the sextant framework by two different radiologists.  Eur Radiol. 2005;  9 1826-1833
  • 13 Kurhanewicz J, Vigneron D B, Hricak H, Narayan P, Carroll P, Nelson S J. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution.  Radiology. 1996;  3 795-805
  • 14 Heerschap A, Jager G J, van der Graaf M, Barentsz J O, Ruijs S H. Proton MR spectroscopy of the normal human prostate with an endorectal coil and a double spin-echo pulse sequence.  Magn Reson Med. 1997;  2 204-213
  • 15 Mueller-Lisse U G, Vigneron D B, Hricak H, Swanson M G, Carroll P R, Bessette A, Scheidler J, Srivastava A, Males R G, Cha I, Kurhanewicz J. Localized prostate cancer: effect of hormone deprivation therapy measured by using combined three-dimensional 1H MR spectroscopy and MR imaging: clinicopathologic case-controlled study.  Radiology. 2001;  2 380-390
  • 16 Costello L C, Franklin R B, Narayan P. Citrate in the diagnosis of prostate cancer.  Prostate. 1999;  3 237-245
  • 17 Qayyum A, Coakley F V, Lu Y, Olpin J D, Wu L, Yeh B M, Carroll P R, Kurhanewicz J. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging.  AJR Am J Roentgenol. 2004;  4 1079-1083
  • 18 Beyersdorff D, Taupitz M, Winkelmann B, Fischer T, Lenk S, Loening S A, Hamm B. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging.  Radiology. 2002;  3 701-706
  • 19 Yuen J S, Thng C H, Tan P H, Khin L W, Phee S J, Xiao D, Lau W K, Ng W S, Cheng C W. Endorectal magnetic resonance imaging and spectroscopy for the detection of tumor foci in men with prior negative transrectal ultrasound prostate biopsy.  J Urol. 2004;  4 1482-1486
  • 20 Amsellem-Ouazana D, Younes P, Conquy S, Peyromaure M, Flam T, Debre B, Zerbib M. Negative prostatic biopsies in patients with a high risk of prostate cancer. Is the combination of endorectal MRI and magnetic resonance spectroscopy imaging (MRSI) a useful tool? A preliminary study.  Eur Urol. 2005;  5 582-586
  • 21 Mueller-Lisse U G, Swanson M G, Vigneron D B, Hricak H, Bessette A, Males R G, Wood P J, Noworolski S, Nelson S J, Barken I, Carroll P R, Kurhanewicz J. Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging.  Magn Reson Med. 2001;  1 49-57
  • 22 Menard C, Smith I C, Somorjai R L, Leboldus L, Patel R, Littman C, Robertson S J, Bezabeh T. Magnetic resonance spectroscopy of the malignant prostate gland after radiotherapy: a histopathologic study of diagnostic validity.  Int J Radiat Oncol Biol Phys. 2001;  2 317-323
  • 23 DiBiase S J, Hosseinzadeh K, Gullapalli R P, Jacobs S C, Naslund M J, Sklar G N, Alexander R B, Yu C. Magnetic resonance spectroscopic imaging-guided brachytherapy for localized prostate cancer.  Int J Radiat Oncol Biol Phys. 2002;  2 429-438
  • 24 Coakley F V, Teh H S, Qayyum A, Swanson M G, Lu Y, Roach 3rd  M, Pickett B, Shinohara K, Vigneron D B, Kurhanewicz J. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience.  Radiology. 2004;  2 441-448
  • 25 Huisman H J, Futterer J J, van Lin E N, Welmers A, Scheenen T W, van Dalen J A, Visser A G, Witjes J A, Barentsz J O. Prostate cancer: precision of integrating functional MR imaging with radiation therapy treatment by using fiducial gold markers.  Radiology. 2005;  1 311-317
  • 26 Kurhanewicz J, Vigneron D B, Hricak H, Parivar F, Nelson S J, Shinohara K, Carroll P R. Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging.  Radiology. 1996;  2 489-496
  • 27 Parivar F, Hricak H, Shinohara K, Kurhanewicz J, Vigneron D B, Nelson S J, Carroll P R. Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy.  Urology. 1996;  4 594-599
  • 28 Hinkle G H, Burgers J K, Neal C E, Texter J H, Kahn D, Williams R D, Maguire R, Rogers B, Olsen J O, Badalament R A. Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide.  Cancer. 1998;  4 739-747
  • 29 Sodee D B, Malguria N, Faulhaber P, Resnick M I, Albert J, Bakale G. Multicenter ProstaScint imaging findings in 2 154 patients with prostate cancer. The ProstaScint Imaging Centers.  Urology. 2000;  6 988-993
  • 30 Reske S N, Kotzerke J. FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000.  Eur J Nucl Med. 2001;  28 1707-1723
  • 31 Agus D B, Golde D W, Sgouros G, Ballangrud A, Cordon-Cardo C, Scher H I. Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal.  Cancer Res. 1998;  14 3009-3014
  • 32 Seltzer M A, Barbaric Z, Belldegrun A, Naitoh J, Dorey F, Phelps M E, Gambhir S S, Hoh C K. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer.  J Urol. 1999;  4 1322-1328
  • 33 Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, Sadato N, Yamamoto K, Okada K. 11C-acetate PET imaging of prostate cancer.  J Nucl Med. 2002;  2 181-186
  • 34 Effert P J, Bares R, Handt S, Wolff J M, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose.  J Urol. 1996;  3 994-998
  • 35 Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline.  J Nucl Med. 1998;  6 990-995
  • 36 Inaba T. Quantitative measurements of prostatic blood flow and blood volume by positron emission tomography.  J Urol. 1992;  5 1457-1460
  • 37 Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, Okada K. The increased accumulation of [18-F]fluorodeoxyglucose in untreated prostate cancer.  Jpn J Clin Oncol. 1999;  12 623-629
  • 38 Heicappell R, Muller-Mattheis V, Reinhardt M, Vosberg H, Gerharz C D, Muller-Gartner H, Ackermann R. Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[18-F]-2-deoxy-D-glucose.  Eur Urol. 1999;  6 582-587
  • 39 Ackerstaff E, Pflug B R, Nelson J B, Bhujwalla Z M. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells.  Cancer Res. 2001;  9 3599-3603
  • 40 Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline.  J Nucl Med. 1997;  6 842-847
  • 41 Breeuwsma A J, Pruim J, Jongen M M, Suurmeijer A J, Vaalburg W, Nijman R J, de Jong I J. In vivo uptake of [(11)C]choline does not correlate with cell proliferation in human prostate cancer.  Eur J Nucl Med Mol Imaging. 2005;  6 668-673
  • 42 Coleman R, DeGrado T, Wang S, Baldwin S, Orr M, Reiman R, Price D. 9:30-9:45. Preliminary evaluation of F-18 fluorocholine (FCH) as a PET tumor imaging agent.  Clin Positron Imaging. 2000;  4 147
  • 43 DeGrado T R, Coleman R E, Wang S, Baldwin S W, Orr M D, Robertson C N, Polascik T J, Price D T. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer.  Cancer Res. 2001;  1 110-117
  • 44 Hara T, Kosaka N, Kishi H. Development of (18)-F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging.  J Nucl Med. 2002;  2 187-199
  • 45 Shreve P, Chiao P C, Humes H D, Schwaiger M, Gross M D. Carbon-11-acetate PET imaging in renal disease.  J Nucl Med. 1995;  9 1595-1601
  • 46 Shreve P D, Gross M D. Imaging of the pancreas and related diseases with PET carbon-11-acetate.  J Nucl Med. 1997;  8 1305-1310
  • 47 Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, Takahashi N, Welch M J, Fujibayashi Y. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells.  Nucl Med Biol. 2001;  2 117-122
  • 48 Swinnen J V, Van Veldhoven P P, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, Van de Sande T, Heemers H, Heyns W, Verhoeven G. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains.  Biochem Biophys Res Commun. 2003;  4 898-903
  • 49 Liu R S. 31. Clinical application of [C-11] acetate in oncology.  Clin Positron Imaging. 2000;  4 185
  • 50 Oyama N, Miller T R, Dehdashti F, Siegel B A, Fischer K C, Michalski J M, Kibel A S, Andriole G L, Picus J, Welch M J. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse.  J Nucl Med. 2003;  4 549-555
  • 51 Kotzerke J, Volkmer B G, Glatting G, van den Hoff J, Gschwend J E, Messer P, Reske S N, Neumaier B. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer.  Nuklearmedizin. 2003;  1 25-30
  • 52 Larson S M, Morris M, Gunther I, Beattie B, Humm J L, Akhurst T A, Finn R D, Erdi Y, Pentlow K, Dyke J, Squire O, Bornmann W, McCarthy T, Welch M, Scher H. Tumor localization of 16beta-18-F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer.  J Nucl Med. 2004;  3 366-373
  • 53 Toth G, Lengyel Z, Balkay L, Salah M A, Tron L, Toth C. Detection of prostate cancer with 11C-methionine positron emission tomography.  J Urol. 2005;  1 66-69 ,  discussion 69
  • 54 Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging.  Urol Int. 2005;  3 214-220
  • 55 de Jong I J, Pruim J, Elsinga P H, Vaalburg W, Mensink H J. Visualization of prostate cancer with 11C-choline positron emission tomography.  Eur Urol. 2002;  1 18-23
  • 56 de Jong I J, Pruim J, Elsinga P H, Vaalburg W, Mensink H J. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET.  J Nucl Med. 2003;  3 331-335
  • 57 Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, Minn H. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study.  Eur J Nucl Med Mol Imaging. 2004;  3 317-324
  • 58 Price D T, Coleman R E, Liao R P, Robertson C N, Polascik T J, DeGrado T R. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer.  J Urol. 2002;  1 273-280
  • 59 Kwee S A, Coel M N, Lim J, Ko J P. Prostate cancer localization with 18-fluorine fluorocholine positron emission tomography.  J Urol. 2005;  1 252-255
  • 60 Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, Canini R, Grigioni W, Boschi S, Marengo M, Pettinato C, Salizzoni E, Monetti N, Franchi R, Fanti S. Detection and localization of prostate cancer: Correlation of 11C-choline PET/CT with histopathologic step-section analysis.  J Nucl Med. 2005;  10 1642-1649
  • 61 Yu K K, Scheidler J, Hricak H, Vigneron D B, Zaloudek C J, Males R G, Nelson S J, Carroll P R, Kurhanewicz J. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging.  Radiology. 1999;  2 481-488
  • 62 van Dorsten F A, van der Graaf M, Engelbrecht M R, van Leenders G J, Verhofstad A, Rijpkema M, de la Rosette J J, Barentsz J O, Heerschap A. Combined quantitative dynamic contrast-enhanced MR imaging and (1)H MR spectroscopic imaging of human prostate cancer.  J Magn Reson Imaging. 2004;  2 279-287
  • 63 Yamaguchi T, Lee J, Uemura H, Sasaki T, Takahashi N, Oka T, Shizukuishi K, Endou H, Kubota Y, Inoue T. Prostate cancer: a comparative study of (11)C-choline PET and MR imaging combined with proton MR spectroscopy.  Eur J Nucl Med Mol Imaging. 2005;  7 742-748

Dr. med. B. Scher

Klinik und Poliklinik für Nuklearmedizin · Ludwig-Maximilians-Universität München

Marchioninistr. 15

81377 München

Phone: +49/89/70 95 46 46

Fax: +49/89/70 95 76 46

Email: Bernhard.Scher@med.uni-muenchen.de