References and Notes
1a
Kuroyanagi M.
Fukuoka M.
Yoshihira K.
Natori S.
Chem. Pharm. Bull.
1974,
22:
723
1b
Yoshihira K.
Fukuoka M.
Kuroyanagi M.
Natori S.
Umeda M.
Morohoshi T.
Enomoto M.
Saito M.
Chem. Pharm. Bull.
1978,
26:
2346
1c
McMorris TC.
Kelner MJ.
Wang W.
Estes LA.
Montoya MA.
Taetle R.
J. Org. Chem.
1992,
57:
6876
1d
Takahashi M.
Fuchino H.
Sekita S.
Satake M.
Phytother. Res.
2004,
18:
573
2
Kobayashi A.
Koshimizu K.
Agric. Biol. Chem.
1980,
44:
393
3
Kobayashi A.
Egawa H.
Koshimizu K.
Mitsui T.
Biol. Chem.
1975,
39:
1851
4a
McMorris TC.
Liu M.
White R.
Lloydia
1977,
40:
221
4b
Ng K.-ME.
McMorris TC.
Can. J. Chem.
1984,
62:
1945
4c
Sheridan H.
Lemon S.
Frankish N.
McArdle P.
Higgins T.
James JP.
Bhandari P.
Eur. J. Med. Chem.
1990,
25:
603
4d
Finkielsztein LM.
Alesso EN.
Lantaño B.
Aguirre JM.
Moltrasio Iglesias GY.
J. Chem. Res., Synop.
1999,
6:
406
4e
Finkielsztein LM.
Alesso EN.
Lantaño B.
Aguirre JM.
Moltrasio Iglesias GY.
J. Chem. Res., Synop.
1999,
6:
1561
4f
Neeson SJ.
Stevenson PJ.
Tetrahedron
1989,
45:
6239
4g
Grigg R.
Scott R.
Stevenson P.
J. Chem. Soc., Perkin Trans. 1
1988,
1357
4h
Grigg R.
Scott R.
Stevenson P.
J. Chem. Soc., Perkin Trans. 1
1988,
1365
4i
Padwa A.
Curtis EA.
Sandanayaka VP.
J. Org. Chem.
1996,
61:
73
5
Wessig P.
Glombitza C.
Müller G.
Teubner J.
J. Org. Chem.
2004,
69:
7582
6a
Wessig P.
Mühling O.
Angew. Chem. Int. Ed.
2001,
40
6b
Wessig P.
Mühling O.
Helv. Chim. Acta
2003,
86:
865
6c
Wessig P.
Mühling O.
Angew. Chem. Int. Ed.
2005,
6778
7
Wessig P.
Schwarz J.
Lindemann U.
Holthausen MC.
Synthesis
2001,
1258
8
Ayer WA.
McCaskill RH.
Can. J. Chem.
1981,
59:
2159
9a
Rieke RD.
Hundall PM.
J. Am. Chem. Soc.
1972,
94:
7178
9b
Rieke RD.
Bales SE.
J. Am. Chem. Soc.
1974,
96:
1775
10
Moffett RB.
Seay PH.
J. Med. Pharm. Chem.
1960,
2:
201
11a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
16:
4467
11b
Negishi E.-I.
Anastasia L.
Chem. Rev.
2003,
103:
1979
11c
Sonogashira K. In
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pattenden G.
Pergamon Press;
Oxford:
1991.
p.521-549
12a
Backlund SJ.
Zweifel G.
J. Am. Chem. Soc.
1977,
99:
3184
12b
4-(Carboxymethyl)-3,5-dimethylbenzoic Acid (10).
Compound 9 (1.00 g, 3.78 mmol) in 10 mL dry THF was cooled to 0 °C and 6.8 mL (6.8 mmol, 1.8 equiv) 1 M BH3-THF solution was dropped in slowly. After stirring at 0 °C for 2 h a mixture of 10 mL (0.02 mol, 5 equiv) 2 M NaOH and 5 mL (0.06 mol, 15 equiv) aq H2O2 solution (30%) was added. After additional stirring for 2 h further 20 mL of 1 M NaOH and 50 mL of Et2O were added. The phases were separated and the aqueous phase was extracted several times with Et2O. Then the aqueous phase was acidified to pH 1 with HCl and the product was extracted with several portions of Et2O. The combined organic phases were dried and evaporated, giving 350 mg (1.68 mmol, 44%) of 10 as a white solid; mp 285 °C. 1H NMR (300 MHz, DMSO-d
6): δ = 2.29 (s, 6 H, 3,5-Me), 3.65 (s, 2 H, CH2), 7.59 (s, 2 H, CHarom). 13C NMR (75 MHz, DMSO-d
6): δ = 19.8 (3,5-Me), 35.2 (CH2), 128.5 (CHarom), 128.8, 137.3, 137.9 (Cq), 167.4, 171.8 (COOH). IR (KBr): 2959 (br s), 2923 (s), 2858 (s), 1718 (s), 1667 (s), 1425 (s), 1413 (s), 1303 (s), 1244 (s), 1230 (s), 1182 (m). HRMS (ESI): m/z calcd for C11H13O4 [MH+]: 209.0808. Found: 209.0809.
13
Muraki T.
Togo H.
Yokoyama M.
J. Org. Chem.
1999,
64:
2883
14
Mizushima E.
Sato K.
Hayashi T.
Tanaka M.
Angew. Chem. Int. Ed.
2002,
114:
4563
15a
Koser GF.
Relenyi AG.
Kalos AN.
Rebrovic L.
Wettach RH.
J. Org. Chem.
1982,
47:
2487
15b
Lodaya JS.
Koser GF.
J. Org. Chem.
1988,
53:
210
16a
Bergmark WR.
J. Chem. Soc., Chem. Commun.
1978,
61
16b
Bergmark WR.
Barnes C.
Clark J.
Paparian S.
Marynowski S.
J. Org. Chem.
1985,
50:
5612
16c
Favorskii AJ.
Russ. Phys. Chem. Soc.
1905,
37:
643
16d
Kende AS.
Org. React.
1960,
11:
261
17
Irradiation of 17a and 17b.
For solvents, conditions and yields see Table
[1]
. The irradiation was performed in a 500 mL reactor vessel, equipped with a 150 W high-pressure mercury arc lamp (TQ 150, Heraeus) and monitored by TLC. The solvent was removed in vacuo and the residue was purified by flash chromatography.
Analytical Data for 2-(4,6-Dimethyl-3-oxo-2,3-dihydro-1
H
-inden-5-yl)ethyl Acetate (
18a).
Mp 39-41 °C. 1H NMR (300 MHz, CDCl3): δ = 2.03 (s, 3 H, CH3-acetate), 2.42 (s, 3 H, Me-Carom), 2.60-2.64 (m, 2 H, 2-CH2), 2.67 (s, 3 H, Me-Carom), 2.94-2.98 (m, 2 H, 3-CH2), 3.03 (t, J
3 = 7.7 Hz, 2 H, CH2CH2O), 4.12 (t, J
3 = 7.7 Hz, 2 H, CH2CH2O), 7.10 (s, 1 H, CHarom). 13C NMR (75 MHz, CDCl3): δ = 13.6, 21.0 (CH3-Carom), 21.1 (CH3-acetate), 24.6 (3-CH2), 27.8 (CH2CH2O), 37.1 (2-CH2), 62.7 (CH2CH2O), 125.9 (CHarom), 132.9, 133.8, 137.8, 140.1, 154.6 (Cq), 171.0 (COOR), 207.8 (RCOR).
Analytical Data for 2-{1-[(Pivaloyl)oxy]-4,6-dimethyl-3-oxo-2,3-dihydro-1
H
-inden-5-yl}ethyl Pivalate (
18b).
1H NMR (300 MHz, CDCl3): δ = 1.14, 1.17 (s, 9 H, Piv), 2.46 (s, 3H, Me-Carom), 2.51 (dd, J
3 = 3.0 Hz, J
2 = 18.8 Hz, 1 H, CH2CH), 2.68 (s, 3 H, Me-Carom), 3.03 (t, J
3 = 7.7 Hz, 2 H, CH2CH2O), 3.08 (dd, J
3 = 7.1 Hz, J
2 = 18.8 Hz, 1 H, CH2CH), 4.10 (t, J
3 = 7.7 Hz, 2 H, CH2CH2O), 6.15 (dd, J
3 = 3.0 Hz, J
3 = 7.1 Hz, 1 H, CHOPiv), 7.19 (s, 1 H, CHarom). 13C NMR (75 MHz, CDCl3): δ = 13.8, 21.3 (CH3-Carom), 27.0, 27.1 (CH3, Piv), 28.0 (CH2CH2O), 38.6, 38.6 (Cq, Piv), 44.6 (2-CH2), 62.3 (CH2CH2O), 68.5 (3-CH), 73.2 (CH2O), 125.4 (CHarom), 132.8, 136.7, 137.5, 145.1, 151.0 (Cq), 178.5, 178.6 (COOR), 202.9 (RCOR). IR (film): 2973 (s), 1717 (vs), 1599 (s), 1478 (s), 1458 (s), 1396 (s), 1281 (s), 1148 (s), 1033 (s), 1010 (s), 984 (m). HRMS (ESI): m/z calcd for C23H33O5 [MH+]: 389.2323; found: 389.2324.
18a
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
Wiley-Interscience;
New York:
1999.
p.171
18b
Kosmol H.
Hill F.
Kerb U.
Kieslich K.
Tetrahedron Lett.
1970,
11:
641
18c
Poijärvi P.
Orivanen M.
Lönnberg H.
Lett. Org. Chem.
2004,
1:
183
19
Experimental Procedure for 3-Hydroxy-6-(2-hydroxyethyl)-5,7-dimethyl-1-indanone (
22).
To a solution of 65 mg (0.17 mmol) 18b in 10 mL DMSO was added a mixture of 100 mL 0.01 M aq HEPES buffer solution (pH 7.5, I = 0.1 M NaCl) and 90 mg (2160 units) porcine liver esterase (EC 3.1.1.1, Sigma). The mixture was stirred 2 d at r.t. in which the reaction course was monitored by HPLC analysis (see below). After complete saponification of both ester groups the mixture was treated with 50 mL CH2Cl2, filtrated and the phases were separated. The organic phase was dried with MgSO4, evaporated and purified by FCC (CH2Cl2-MeOH, 10:1, R
f
= 0.39) affording 20.0 mg (90.8 mol, 54%) 22 as a white solid.
HPLC conditions: column: Eurospher 100 C-18 (Knauer), 5 µm, 250 × 4 mm; mobile phase: gradient MeOH-H2O (70:30 → 90:10) linear in 20 min, then 90:10 flow: 1 mL/min. peaks: t
R(22) = 2.6 min, t
R(18b) = 31.9 min.
Mp 143-145 °C. 1H NMR (300 MHz, DMSO-d
6): δ = 2.34 (dd, J
3 = 3.0 Hz, J
2 = 18.5 Hz, 1 H, CH2CH), 2.40, 2.56 (s, 3 H, Me-Carom), 2.84 (t, J
3 = 7.5 Hz, 2 H, CH2CH2OH), 2.90 (dd, J
3 = 7.0 Hz, J
2 = 18.5 Hz, 1 H, CH2CH), 3.41-3.46 (m, 2 H, CH2CH2OH), 4.78 (t, J
3 = 5.5 Hz, 1 H, CH2OH), 5.02-5.06 (m, 1 H, 3-CH), 5.57 (d, J
3 = 6.0 Hz, 1 H, OH), 7.31 (s, 1 H, CHarom). 13C NMR (75 MHz, DMSO-d
6): δ = 13.3, 21.0 (CH3-Carom), 32.1 (CH2CH2OH), 47.7 (2-CH2), 59.8 (CH2CH2OH), 65.6 (3-CH), 125.0 (CHarom), 131.5, 135.6, 137.1, 144.2, 155.6 (Cq), 204.3 (RCOR). IR (KBr): 3391 (br s), 2923 (m), 1687 (vs), 1596 (s), 1408 (m), 1326 (m), 1308 (s), 1260 (m), 1065 (s), 1025 (s), 804 (m). HRMS (ESI): m/z calcd for C13H17O3 [MH+]: 221.1172; found: 221.1173.