Abstract
Guanacastepene A, the leading member of a structurally diverse family of diterpene
natural products, was isolated from the extracts of an unidentified fungus. The discovery
of its potent antibiotic activity as well as its previously unreported tricyclic architecture
render guanacastepene A an attractive and formidable target for total synthesis. Specifically,
guanacastepene A’s synthetic challenges include 2 ring-junction quaternary methyl
groups and a novel 5-7-6 tricyclic carbon skeleton possessing a dense array of oxygen
and unsaturated functionalities. In this account, we will discuss our motivation and
efforts toward the total synthesis of guanacastepene A as well as highlight the contributions
from the synthetic community toward this pursuit.
1 Introduction
1.1 Biological Activity
1.2 Isolation and Characterization
2 An Overview of Synthetic Strategies
2.1 Hydroazulene Core
2.2 Hydroazulene to Tricycle
2.3 Tricycle Closure by a Formal C10-C11 Connection
2.4 Tricycle Closure between C1-C2
2.5 A-Ring to Tricycle
2.6 C-Ring to Tricycle
3 Our Strategy
3.1 Initial Planning
3.2 Retrosynthesis
3.3 Synthesis of the Guanacastane Tricycle
3.4 Elaboration of the Tricycle
3.5 Investigation of the Aldol Reaction
3.6 A More Convergent Synthetic Approach
4 Current Investigation
5 Conclusion
Key words
guanacastepene - diterpene - total synthesis
References and Notes
<A NAME="RA40405ST-1">1 </A>
Brady SF.
Singh MP.
Janso JE.
Clardy J.
J. Am. Chem. Soc.
2000,
122:
2116
<A NAME="RA40405ST-2">2 </A>
Henkel T.
Brunne RM.
Müller H.
Reichel F.
Angew. Chem. Int. Ed.
1999,
38:
643
<A NAME="RA40405ST-3">3 </A>
Singh MP.
Janso JE.
Luckman SW.
Brady SF.
Clardy J.
Greenstein M.
Maiese WM.
J. Antibiot.
2000,
53:
256
<A NAME="RA40405ST-4">4 </A>
Tan DS.
Dudley GB.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2002,
41:
2185
<A NAME="RA40405ST-5">5 </A>
Brady SF.
Bondi SM.
Clardy J.
J. Am. Chem. Soc.
2001,
123:
9900
<A NAME="RA40405ST-6">6 </A>
Mischne M.
Curr. Org. Synth.
2005,
2:
261
<A NAME="RA40405ST-7A">7a </A>
Mandal M.
Yun H.
Dudley GB.
Lin S.
Tan DS.
Danishefsky SJ.
J. Org. Chem.
2005,
70:
10619
<A NAME="RA40405ST-7B">7b </A>
Yun H.
Danishefsky SJ.
Tetrahedron Lett.
2005,
46:
3879
<A NAME="RA40405ST-7C">7c </A>
Mandal M.
Danishefsky SJ.
Tetrahedron Lett.
2004,
45:
3831
<A NAME="RA40405ST-7D">7d </A>
Mandal M.
Danishefsky SJ.
Tetrahedron Lett.
2004,
45:
3827
<A NAME="RA40405ST-7E">7e </A>
Dudley GB.
Danishefsky SJ.
Sukenick G.
Tetrahedron Lett.
2002,
43:
5605
<A NAME="RA40405ST-7F">7f </A>
Lin S.
Dudley GB.
Tan DS.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2002,
41:
2188
<A NAME="RA40405ST-7G">7g </A>
Tan DS.
Dudley GB.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2002,
41:
2185
<A NAME="RA40405ST-7H">7h </A>
Dudley GB.
Tan DS.
Kim G.
Tanski JM.
Danishefsky SJ.
Tetrahedron Lett.
2001,
42:
6789
<A NAME="RA40405ST-7I">7i </A>
Dudley GB.
Danishefsky SJ.
Org. Lett.
2001,
3:
2399
<A NAME="RA40405ST-8A">8a </A>
Shi B.
Hawryluk NA.
Snider BB.
J. Org. Chem.
2003,
68:
1030
<A NAME="RA40405ST-8B">8b </A>
Snider BB.
Shi B.
Tetrahedron Lett.
2001,
42:
9123
<A NAME="RA40405ST-8C">8c </A>
Snider BB.
Hawryluk NA.
Org. Lett.
2001,
3:
569
<A NAME="RA40405ST-9A">9a </A>
Boyer F.-D.
Hanna I.
Ricard L.
Org. Lett.
2004,
6:
1817
<A NAME="RA40405ST-9B">9b </A>
Boyer F.-D.
Hanna I.
Tetrahedron Lett.
2002,
43:
7469
<A NAME="RA40405ST-10A">10a </A>
Mehta G.
Pallavi K.
Umarye JD.
Chem. Commun.
2005,
4456
<A NAME="RA40405ST-10B">10b </A>
Mehta G.
Umarye JD.
Srinivas K.
Tetrahedron Lett.
2003,
44:
4233
<A NAME="RA40405ST-10C">10c </A>
Mehta G.
Umarye JD.
Srinivas K.
Tetrahedron Lett.
2002,
43:
6975
<A NAME="RA40405ST-10D">10d </A>
Mehta G.
Umarye JD.
Org. Lett.
2002,
4:
1063
<A NAME="RA40405ST-11A">11a </A>
Magnus P.
Ollivier C.
Tetrahedron Lett.
2002,
43:
9605
<A NAME="RA40405ST-11B">11b </A>
Magnus P.
Waring MJ.
Ollivier C.
Lynch V.
Tetrahedron Lett.
2001,
42:
4947
<A NAME="RA40405ST-12A">12a </A>
Evans DA.
Andrews GC.
Acc. Chem. Res.
1974,
7:
147
<A NAME="RA40405ST-12B">12b </A>
Zhou ZS.
Flohr A.
Hilvert D.
J. Org. Chem.
1999,
64:
8334
<A NAME="RA40405ST-13">13 </A>
Nakazaki A.
Sharma U.
Tius MA.
Org. Lett.
2002,
4:
3363
<A NAME="RA40405ST-14">14 </A>
Chiu P.
Li S.
Org. Lett.
2004,
6:
613
<A NAME="RA40405ST-15">15 </A>
Srikrishna A.
Dethe DH.
Org. Lett.
2004,
6:
165
<A NAME="RA40405ST-16">16 </A>
Quinkert G.
Müller T.
Königer A.
Schultheis O.
Sickenberger B.
Dürner G.
Tetrahedron Lett.
1992,
33:
3469
<A NAME="RA40405ST-17">17 </A>
Shipe WD.
Sorensen EJ.
Org. Lett.
2002,
4:
2063
<A NAME="RA40405ST-18A">18a </A>
Hughes CC.
Miller AK.
Trauner D.
Org. Lett.
2005,
7:
3425
<A NAME="RA40405ST-18B">18b </A>
Hughes CC.
Kennedy-Smith JJ.
Trauner D.
Org. Lett.
2003,
5:
4113
<A NAME="RA40405ST-19">19 </A>
Wright DL.
Whitehead CR.
Sessions EH.
Ghiviriga I.
Frey DA.
J. Am. Chem. Soc.
1999,
121:
1535
<A NAME="RA40405ST-20">20 </A>
Mihelcic J.
Moeller KD.
J. Am. Chem. Soc.
2004,
126:
9106
<A NAME="RA40405ST-21A">21a </A>
Du X.
Chu HV.
Kwon O.
Tetrahedron Lett.
2004,
45:
8843
<A NAME="RA40405ST-21B">21b </A>
Du X.
Chu HV.
Kwon O.
Org. Lett.
2003,
5:
1923
<A NAME="RA40405ST-22">22 </A>
Li C.-C.
Liang S.
Zhang X.-H.
Xie Z.-X.
Chen J.-H.
Wu Y.-D.
Yang Z.
Org. Lett.
2005,
7:
3709
<A NAME="RA40405ST-23">23 </A>
Brummond KM.
Gao D.
Org. Lett.
2003,
5:
3491
<A NAME="RA40405ST-24A">24a </A>
Nguyen TM.
Seifert RJ.
Mowrey DR.
Lee D.
Org. Lett.
2002,
4:
3959
<A NAME="RA40405ST-24B">24b </A>
Nguyen TM.
Lee D.
Tetrahedron Lett.
2002,
43:
4033
<A NAME="RA40405ST-25">25 </A>
Meyers AG.
Hammond M.
Wu Y.
Xiang J.-N.
Harrington PM.
Kuo EY.
J. Am. Chem. Soc.
1996,
118:
10006
<A NAME="RA40405ST-26">26 </A>
Burke SD.
Buchanan JL.
Rovin JD.
Tetrahedron Lett.
1991,
32:
3961
<A NAME="RA40405ST-27">27 </A>
Sivik MR.
Stanton KJ.
Paquette LA.
Org. Synth.
1995,
72:
57
<A NAME="RA40405ST-28A">28a </A>
Erman WF.
J. Am. Chem. Soc.
1967,
89:
3828
<A NAME="RA40405ST-28B">28b </A>
Erman WF.
J. Am. Chem. Soc.
1967,
89:
779
<A NAME="RA40405ST-29">29 </A>
A slight loss of optical purity (13%) was noted in the photorearrangement, presumably
due to a process involving fragmentation of the diradical to an intermediate ketene.
<A NAME="RA40405ST-30A">30a </A>
Kulkarni YS.
Niwa M.
Ron E.
Snider BB.
J. Org. Chem.
1987,
52:
1568
<A NAME="RA40405ST-30B">30b </A>
Erman WF.
Wenkert E.
Jeffs PW.
J. Org. Chem.
1968,
34:
2196
<A NAME="RA40405ST-31">31 </A>
Murthy AR.
Sundar NS.
Rao GSRS.
Tetrahedron
1982,
38:
2831
<A NAME="RA40405ST-32A">32a </A>
Black TH.
Aldrichimica Acta
1983,
16:
3
<A NAME="RA40405ST-32B">32b </A>
Cushman M.
Cheng L.
J. Org. Chem.
1978,
43:
286
<A NAME="RA40405ST-33">33 </A>
Hareau GP.-J.
Koiwa M.
Hikichi S.
Sato F.
J. Am. Chem. Soc.
1999,
121:
3640 ; and references cited therein
<A NAME="RA40405ST-34">34 </A>
Lipshutz BH.
Wood RH.
Tirado R.
Org. Synth.
1999,
76:
252
<A NAME="RA40405ST-35A">35a </A>
Zakarian A.
Batch A.
Holton RA.
J. Am. Chem. Soc.
2003,
125:
7822
<A NAME="RA40405ST-35B">35b </A>
Zhu L.
Weymeyer RM.
Rieke RD.
J. Org. Chem.
1991,
56:
1445
<A NAME="RA40405ST-36A">36a </A>
Kim M.
Park S.
Maifeld SV.
Lee D.
J. Am. Chem. Soc.
2004,
126:
10242
<A NAME="RA40405ST-36B">36b </A>
Hansen E.
Lee D.
J. Am. Chem. Soc.
2004,
126:
15074
<A NAME="RA40405ST-36C">36c </A>
Maifeld SV.
Miller RL.
J. Am. Chem. Soc.
2004,
126:
12228
<A NAME="RA40405ST-36D">36d </A>
Miller RL.
Maifeld SV.
Lee D.
Org. Lett.
2004,
6:
2773