Subscribe to RSS
DOI: 10.1055/s-2006-944213
Progress toward the Total Synthesis of Guanacastepene A
Publication History
Publication Date:
04 July 2006 (online)
Abstract
Guanacastepene A, the leading member of a structurally diverse family of diterpene natural products, was isolated from the extracts of an unidentified fungus. The discovery of its potent antibiotic activity as well as its previously unreported tricyclic architecture render guanacastepene A an attractive and formidable target for total synthesis. Specifically, guanacastepene A’s synthetic challenges include 2 ring-junction quaternary methyl groups and a novel 5-7-6 tricyclic carbon skeleton possessing a dense array of oxygen and unsaturated functionalities. In this account, we will discuss our motivation and efforts toward the total synthesis of guanacastepene A as well as highlight the contributions from the synthetic community toward this pursuit.
-
1 Introduction
-
1.1 Biological Activity
-
1.2 Isolation and Characterization
-
2 An Overview of Synthetic Strategies
-
2.1 Hydroazulene Core
-
2.2 Hydroazulene to Tricycle
-
2.3 Tricycle Closure by a Formal C10-C11 Connection
-
2.4 Tricycle Closure between C1-C2
-
2.5 A-Ring to Tricycle
-
2.6 C-Ring to Tricycle
-
3 Our Strategy
-
3.1 Initial Planning
-
3.2 Retrosynthesis
-
3.3 Synthesis of the Guanacastane Tricycle
-
3.4 Elaboration of the Tricycle
-
3.5 Investigation of the Aldol Reaction
-
3.6 A More Convergent Synthetic Approach
-
4 Current Investigation
-
5 Conclusion
Key words
guanacastepene - diterpene - total synthesis
- 1
Brady SF.Singh MP.Janso JE.Clardy J. J. Am. Chem. Soc. 2000, 122: 2116 - 2
Henkel T.Brunne RM.Müller H.Reichel F. Angew. Chem. Int. Ed. 1999, 38: 643 - 3
Singh MP.Janso JE.Luckman SW.Brady SF.Clardy J.Greenstein M.Maiese WM. J. Antibiot. 2000, 53: 256 - 4
Tan DS.Dudley GB.Danishefsky SJ. Angew. Chem. Int. Ed. 2002, 41: 2185 - 5
Brady SF.Bondi SM.Clardy J. J. Am. Chem. Soc. 2001, 123: 9900 - 6
Mischne M. Curr. Org. Synth. 2005, 2: 261 -
7a
Mandal M.Yun H.Dudley GB.Lin S.Tan DS.Danishefsky SJ. J. Org. Chem. 2005, 70: 10619 -
7b
Yun H.Danishefsky SJ. Tetrahedron Lett. 2005, 46: 3879 -
7c
Mandal M.Danishefsky SJ. Tetrahedron Lett. 2004, 45: 3831 -
7d
Mandal M.Danishefsky SJ. Tetrahedron Lett. 2004, 45: 3827 -
7e
Dudley GB.Danishefsky SJ.Sukenick G. Tetrahedron Lett. 2002, 43: 5605 -
7f
Lin S.Dudley GB.Tan DS.Danishefsky SJ. Angew. Chem. Int. Ed. 2002, 41: 2188 -
7g
Tan DS.Dudley GB.Danishefsky SJ. Angew. Chem. Int. Ed. 2002, 41: 2185 -
7h
Dudley GB.Tan DS.Kim G.Tanski JM.Danishefsky SJ. Tetrahedron Lett. 2001, 42: 6789 -
7i
Dudley GB.Danishefsky SJ. Org. Lett. 2001, 3: 2399 -
8a
Shi B.Hawryluk NA.Snider BB. J. Org. Chem. 2003, 68: 1030 -
8b
Snider BB.Shi B. Tetrahedron Lett. 2001, 42: 9123 -
8c
Snider BB.Hawryluk NA. Org. Lett. 2001, 3: 569 -
9a
Boyer F.-D.Hanna I.Ricard L. Org. Lett. 2004, 6: 1817 -
9b
Boyer F.-D.Hanna I. Tetrahedron Lett. 2002, 43: 7469 -
10a
Mehta G.Pallavi K.Umarye JD. Chem. Commun. 2005, 4456 -
10b
Mehta G.Umarye JD.Srinivas K. Tetrahedron Lett. 2003, 44: 4233 -
10c
Mehta G.Umarye JD.Srinivas K. Tetrahedron Lett. 2002, 43: 6975 -
10d
Mehta G.Umarye JD. Org. Lett. 2002, 4: 1063 -
11a
Magnus P.Ollivier C. Tetrahedron Lett. 2002, 43: 9605 -
11b
Magnus P.Waring MJ.Ollivier C.Lynch V. Tetrahedron Lett. 2001, 42: 4947 -
12a
Evans DA.Andrews GC. Acc. Chem. Res. 1974, 7: 147 -
12b
Zhou ZS.Flohr A.Hilvert D. J. Org. Chem. 1999, 64: 8334 - 13
Nakazaki A.Sharma U.Tius MA. Org. Lett. 2002, 4: 3363 - 14
Chiu P.Li S. Org. Lett. 2004, 6: 613 - 15
Srikrishna A.Dethe DH. Org. Lett. 2004, 6: 165 - 16
Quinkert G.Müller T.Königer A.Schultheis O.Sickenberger B.Dürner G. Tetrahedron Lett. 1992, 33: 3469 - 17
Shipe WD.Sorensen EJ. Org. Lett. 2002, 4: 2063 -
18a
Hughes CC.Miller AK.Trauner D. Org. Lett. 2005, 7: 3425 -
18b
Hughes CC.Kennedy-Smith JJ.Trauner D. Org. Lett. 2003, 5: 4113 - 19
Wright DL.Whitehead CR.Sessions EH.Ghiviriga I.Frey DA. J. Am. Chem. Soc. 1999, 121: 1535 - 20
Mihelcic J.Moeller KD. J. Am. Chem. Soc. 2004, 126: 9106 -
21a
Du X.Chu HV.Kwon O. Tetrahedron Lett. 2004, 45: 8843 -
21b
Du X.Chu HV.Kwon O. Org. Lett. 2003, 5: 1923 - 22
Li C.-C.Liang S.Zhang X.-H.Xie Z.-X.Chen J.-H.Wu Y.-D.Yang Z. Org. Lett. 2005, 7: 3709 - 23
Brummond KM.Gao D. Org. Lett. 2003, 5: 3491 -
24a
Nguyen TM.Seifert RJ.Mowrey DR.Lee D. Org. Lett. 2002, 4: 3959 -
24b
Nguyen TM.Lee D. Tetrahedron Lett. 2002, 43: 4033 - 25
Meyers AG.Hammond M.Wu Y.Xiang J.-N.Harrington PM.Kuo EY. J. Am. Chem. Soc. 1996, 118: 10006 - 26
Burke SD.Buchanan JL.Rovin JD. Tetrahedron Lett. 1991, 32: 3961 - 27
Sivik MR.Stanton KJ.Paquette LA. Org. Synth. 1995, 72: 57 -
28a
Erman WF. J. Am. Chem. Soc. 1967, 89: 3828 -
28b
Erman WF. J. Am. Chem. Soc. 1967, 89: 779 -
30a
Kulkarni YS.Niwa M.Ron E.Snider BB. J. Org. Chem. 1987, 52: 1568 -
30b
Erman WF.Wenkert E.Jeffs PW. J. Org. Chem. 1968, 34: 2196 - 31
Murthy AR.Sundar NS.Rao GSRS. Tetrahedron 1982, 38: 2831 -
32a
Black TH. Aldrichimica Acta 1983, 16: 3 -
32b
Cushman M.Cheng L. J. Org. Chem. 1978, 43: 286 - 33
Hareau GP.-J.Koiwa M.Hikichi S.Sato F. J. Am. Chem. Soc. 1999, 121: 3640 ; and references cited therein - 34
Lipshutz BH.Wood RH.Tirado R. Org. Synth. 1999, 76: 252 -
35a
Zakarian A.Batch A.Holton RA. J. Am. Chem. Soc. 2003, 125: 7822 -
35b
Zhu L.Weymeyer RM.Rieke RD. J. Org. Chem. 1991, 56: 1445 -
36a
Kim M.Park S.Maifeld SV.Lee D. J. Am. Chem. Soc. 2004, 126: 10242 -
36b
Hansen E.Lee D. J. Am. Chem. Soc. 2004, 126: 15074 -
36c
Maifeld SV.Miller RL. J. Am. Chem. Soc. 2004, 126: 12228 -
36d
Miller RL.Maifeld SV.Lee D. Org. Lett. 2004, 6: 2773
References and Notes
A slight loss of optical purity (13%) was noted in the photorearrangement, presumably due to a process involving fragmentation of the diradical to an intermediate ketene.