Subscribe to RSS
DOI: 10.1055/s-2006-949620
Novel Preparation of a 2′-O-Acetyl-1′-O-(4-methoxybenzyl)-l-biopterin Derivative, a Versatile Precursor for a Selective Synthesis of l-Biopterin Glycosides
Publication History
Publication Date:
09 August 2006 (online)
Abstract
l-Rhamnose was converted, over a 13-step-sequence, into 2′-O-acetyl-N 2-(N,N-dimethylaminomethylene)-1′-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]-l-biopterin, an appropriately protected precursor of 1′-O- and 2′-O-monoglycosyl-l-biopterin. Thus, the first selective synthesis of these l-biopterin glycosides was accomplished by treatment of the precursor with either DDQ or sodium methoxide, then with tetra-O-benzoyl-α-d-glucopyranosyl bromide in the presence of silver triflate and tetramethylurea, followed by removal of the remaining protecting groups.
Key words
l-biopterin glycosides - limipterin - glycosylations - pteridine - protecting groups
-
1a
Pfleiderer W. Angew. Chem., Int. Ed. Engl. 1964, 3: 114 -
1b
Rembold H.Gyure WL. Angew. Chem., Int. Ed. Engl. 1972, 11: 1061 -
1c
Hama T.Obika M. Nature (London) 1960, 187: 326 -
1d
Forrest HS.Van Baalen C. Ann. Rev. Microbiol. 1970, 24: 91 -
1e
Ziegler I.Harmsen R. Adv. Insect. Physiol. 1969, 6: 139 -
2a
Patterson EL.Broquist HP.Albrecht AM.von Saltza MH.Stokstad ELR. J. Am. Chem. Soc. 1955, 77: 3167 -
2b
Patterson EL.von Saltza MH.Stokstad ELR. J. Am. Chem. Soc. 1956, 78: 5871 -
3a
Kaufman S.Fisher DB. In Molecular Mechanisms of Oxygen ActivationHayaishi O. Academic Press; New York: 1974. p.285-369 -
3b
Kaufman S.Kaufman EE. In Folates and Pterins Vol. 2:Blakley R.Benkovic SJ. J. Wiley and Sons; New York: 1985. p.251-352 - 4
Forrest HS.Van Baalen C.Myers J. Arch. Biochem. Biophys. 1958, 78: 95 - 5
Choi YK.Hwang YK.Kang YH.Park YS. Pteridines 2001, 12: 121 - 6
Noguchi Y.Ishii A.Matsushima A.Haishi D.Yasumuro K.Moriguchi T.Wada T.Kodera Y.Hiroto M.Nishihara H.Sekine M.Inada Y. Mar. Biotechnol. 1999, 1: 207 - 7
Cha KW.Pfleiderer W.Yim JJ. Helv. Chim. Acta 1995, 78: 600 -
8a
Lin X.White RH. J. Bacteriol. 1988, 170: 1396 -
8b
Cho S.-H.Na J.-U.Youn H.Hwang C.-S.Lee C.-H.Kang S.-O. Biochim. Biophys. Acta 1998, 1379: 53 -
8c
Lee HW.Oh CH.Geyer A.Pfleiderer W.Park YS. Biochim. Biophys. Acta 1999, 1410: 61 - 9
Ikawa M.Sasner JJ.Haney JF.Foxall TL. Phytochemistry 1995, 38: 1229 - 10
Hanaya T.Soranaka K.Harada K.Yamaguchi H.Suzuki R.Endo Y.Yamamoto H.Pfleiderer W. Heterocycles 2006, 67: 299 - 11
Ness RK.Fletcher HG.Hudson CS. J. Am. Chem. Soc. 1950, 72: 2200 -
12a
Patterson EL.Milstrey R.Stockstad ELR. J. Am. Chem. Soc. 1956, 78: 5868 -
12b
Viscontini M.Provenzale R.Frei WF. Helv. Chim. Acta 1972, 55: 570 -
12c
Taylor EC.Jacobi PA. J. Am. Chem. Soc. 1976, 98: 2301 -
12d
Kappel M.Mengel R.Pfleiderer W. Liebigs Ann. Chem. 1984, 1815 -
12e
Mori K.Kikuchi H. Liebigs Ann. Chem. 1989, 963 -
12f
Murata S.Sugimoto T.Ogiwara S.Mogi K.Wasada H. Synthesis 1992, 303 -
13a
Hanaya T.Torigoe K.Soranaka K.Yamamoto H.Yao Q.Pfleiderer W. Pteridines 1995, 6: 1 -
13b
Yao Q.Pfleiderer W. Helv. Chim. Acta 2003, 86: 1 -
14a
Oikawa Y.Yoshioka T.Yonemitsu O. Tetrahedron Lett. 1982, 23: 885 -
14b
Oikawa Y.Tanaka T.Horita K.Yonemitsu O. Tetrahedron Lett. 1984, 25: 5397 -
14c
Tanaka T.Oikaya Y.Hamada T.Yonemitsu O. Tetrahedron Lett. 1986, 27: 3651 - 15 Addition of 2,2-dimethoxypropane gave a higher yield of 6 (80%) than that of reported method by use of only acetone (68%):
Gigg R.Payne S.Conant R. J. Carbohydr. Res. 1983, 2: 207 - 17
Hough L.Taylor TJ. J. Chem. Soc. 1955, 3544 - 18
Weinstock J. inventors; US 3505329. ; Chem. Abstr. 1970, 72, 132787h -
21a
Tobias S.Günther H.Pfleiderer W. Chem. Ber. 1985, 118: 354 -
21b
Geerts JP.Nagel A.Van der Plas HC. Org. Magn. Reson. 1976, 8: 606 - 23
Farkas J.Ledvina M.Brokes J.Jezek J.Zajicek J.Zaoral M. Carbohydr. Res. 1987, 163: 63
References and Notes
When acidic hydrolysis of methyl 2,3-O-isopropylidene-4-O-PMB-α-l-rhamnopyranoside was attempted to obtain 4-O-PMB-l-rhamnose(8), removal of the PMB group preferentially took place rather than hydrolysis of methyl glycoside. Therefore we employed 1-propenyl glycoside, which is cleavable under weaker acidic conditions.
19A similar condensation of non-protected 5-deoxy-l-erythro-pentos-2-ulose with the same pyrimidine derivative has been reported to provide an 8:2 mixture of 6- and 7-substituted pterins in a relatively low yield (37%; ref. 18).
20Selected NMR data for 14a: 1H (600 MHz, CDCl3): δ = 1.23 (3 H, d, J
2
′,3
′ = 6.6 Hz, H-3′), 4.77 (1 H, d, J
1
′,2
′ = 4.4 Hz, H-1′), 5.36 (1 H, qd, H-2′), 8.96 (1 H, s, H-7). 13C (151 MHz, CDCl3): δ = 15.92 (C-3′), 71.76 (C-2′), 82.21 (C-1′), 128.36 (C-4a), 149.88 (C-7), 150.71 (C-6), 153.63 (C-8a), 157.55 (C-2), 161.83 (C-4).
Selected NMR data for 14b: 1H (600 MHz, CDCl3): δ = 1.22 (3 H, d, J
2
′,3
′ = 6.6 Hz, H-3′), 4.66 (1 H, d, J
1
′,2
′ = 4.2 Hz, H-1′), 5.37 (1 H, qd, H-2′), 8.78 (1 H, s, H-6). 13C (151 MHz, CDCl3): δ = 15.61 (C-3′), 71.94 (C-2′), 82.26 (C-1′), 129.29 (C-4a), 159.98 (C-7), 140.92 (C-6), 153.17 (C-8a), 157.88 (C-2), 161.83 (C-4).
Use of SnCl4 as an activator resulted in the formation of diol 4 by cleavage of PMB group instead of glycosylation.
24
General Procedure for Glycosylation of 15.
To a solution of 15 (56 mg, 0.10 mmol), glycosyl bromide (0.30 mmol) and TMU (0.012 mL, 0.10 mmol) in dry CH2Cl2 (1.0 mL) was added silver triflate (56 mg, 0.22 mmol). The mixture was stirred at r.t. for 3 h, diluted with CHCl3, and filtered through Celite®. The filtrate was washed with aq NaHCO3, dried (MgSO4), and evaporated in vacuo. The residue was purified by column chromatography to give the 2′-O-glucopyranosyl-l-biopterin derivative.