Synlett 2006(17): 2821-2823  
DOI: 10.1055/s-2006-950246
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of a Heterobifunctional PEG Spacer Terminated with Aminooxy and Bromide Functionality

Christopher W. Dicus, Michael H. Nantz
Department of Chemistry, University of California Davis, Davis, CA 95616, USA
Fax: +1(502)8527214; e-Mail: michael.nantz@louisville.edu;
Further Information

Publication History

Received 12 June 2006
Publication Date:
09 October 2006 (online)

Abstract

A simple and efficient synthesis of a novel heterobifunctional polyethylene glycol (PEG) spacer is described. The PEG spacer reagent is terminated with aminooxy and bromide functionality for ease of conjugation to a variety of electrophiles and/or nucleophiles.

    References and Notes

  • 2a Bailon P. Berthold W. Pharm. Sci. Technol. Today  1998,  352 
  • 2b Veronese FM. Biomaterials  2001,  405 
  • 2c Pasut G. Veronese FM. Adv. Polym. Sci.  2006,  95 
  • 3 Dreborg S. Akerblom EB. Crit. Rev. Ther. Drug Carrier Syst.  1990,  315 
  • 4 Smaller PEG units (MW <500), also referred to as oligoethylene glycol (OEG), often are employed as spacers; see, for example: Engel A. Chatterjee SK. Al-Arifi A. Riemann D. Langner J. Nuhn P. Pharm. Res.  2003,  51 
  • For recent examples, see:
  • 5a Chen H. Chen Y. Sheardown H. Brook MA. Biomaterials  2005,  7418 
  • 5b Otsuka H. Nagasaki Y. Kataoka A. Langmuir  2004,  11285 
  • 5c Manta C. Ferraz N. Betancor L. Antunes G. Batista-Viera F. Carlsson J. Caldwell K. Enzyme Microb. Technol.  2003,  890 
  • For recent reviews, see:
  • 6a Kichler A. J. Gene Med.  2004,  S3 
  • 6b Kircheis R. Wightman L. Wagner E. Adv. Drug Delivery Rev.  2001,  341 
  • 7 Kleemann E. Neu M. Jekel N. Fink L. Schmehl T. Gessler T. Seeger W. Kissel T. J. Controlled Release  2005,  299 
  • 8 Kim WJ. Yockman JW. Lee M. Jeong LH. Kim Y.-H. Kim SW. J. Controlled Release  2005,  224 
  • 9 Roberts MJ. Bentley MD. Harris JM. Adv. Drug Delivery Rev.  2002,  459 
  • 10 Engel A. Chatterjee SK. Al-Arifi A. Nuhn P. J. Pharm. Sci.  2003,  2229 
  • 11 Loiseau FA. Hii KK. Hill AM. J. Org. Chem.  2004,  639 
  • 12 Goodson RJ. Katre NV. Biotechnology (N.Y.)  1990,  8:  343 
  • 13 Morpurgo M. Veronese FM. Kachensky D. Harris JM. Bioconjugate Chem.  1996,  7:  363 
  • 14 Woghiren C. Sharma B. Stein S. Bioconjugate Chem.  1993,  4:  314 
  • 15 Tumelty D. Carnevali M. Miranda LP. J. Am. Chem. Soc.  2003,  14238 
  • 16a Lemieux GA. Yarema KJ. Jacobs CL. Bertozzi CR. J. Am. Chem. Soc.  1999,  4278 
  • 16b Sadamoto R. Niikura K. Ueda T. Monde K. Fukuhara N. Nishimura S.-I. J. Am. Chem. Soc.  2004,  3755 
  • 17 Perouzel E. Jorgensen MR. Keller M. Miller AD. Bioconjugate Chem.  2003,  14:  884 
  • 18 Bertozzi CR. Bednarski MD. J. Org. Chem.  1991,  4326 
  • 20a Grochowski E. Jurczak J. Synthesis  1976,  682 
  • 20b Nicolaou KC. Groneberg RD. J. Am. Chem. Soc.  1990,  4085 
  • 20c Su S. Giguere JR. Schaus SE. Porco JA. Tetrahedron  2004,  8645 
  • 21 Appel R. Angew. Chem., Int. Ed. Engl.  1975,  14:  801 
  • 23 Gaertner HF. Offord RE. Bioconjugate Chem.  1996,  7:  38 
1

Present address: Department of Chemistry, University of Louisville, Louisville, KY 40292, USA

19

For moisture-sensitive reactions, optimized yields were obtained only after drying the PEG intermediate by toluene azeotropic distillation immediately prior to use.

22

1H NMR and 13C NMR data (300 MHz and 75 MHz, respectively; in CDCl3) for all compounds: Compound 1a: 1H NMR: δ = 7.23 (br s, 1 H), 4.03 (m, 2 H), 3.82 (t, J = 6.3 Hz, 2 H), 3.74 (m, 2 H), 3.69 (app. s, 4 H), 3.48 (t, J = 6.3 Hz, 2 H), 1.48 (s, 9 H). 13C NMR: δ = 156.7, 81.7, 75.4, 71.2, 70.5, 70.4, 69.4, 30.2, 28.2.
Compound 1b: 1H NMR: δ = 7.59 (br s, 1 H), 4.03 (m, 2 H), 3.82 (t, J = 6.3 Hz, 2 H), 3.70-3.66 (m, 8 H), 3.48 (t, J = 6.3 Hz, 2 H), 1.48 (s, 9 H). 13C NMR: δ = 156.7, 81.5, 75.3, 71.2, 70.6 (3 C), 70.5, 69.3, 30.2, 28.2.
Compound 3a: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.44-7.35 (m, 6 H), 3.82 (t, J = 5.4 Hz, 2 H), 3.73-3.70 (m, 2 H), 3.66 (app. s, 4 H), 3.63 (m, 4 H), 2.17 (br s, 1 H), 1.05 (s. 9 H). 13C NMR: δ = 135.6, 133.6, 129.6, 127.6, 72.5, 70.8, 70.5, 63.4, 61.8, 26.8, 19.2.
Compound 3b: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.44-7.35 (m, 6 H), 3.82 (t, J = 5.4 Hz, 2 H), 3.73-3.70 (m, 2 H), 3.66-3.58 (m, 12 H), 2.25 (br s, 1 H), 1.05 (s, 9 H). 13C NMR: δ = 135.6, 133.6, 129.6, 127.6, 72.5, 72.4, 70.7, 70.7, 70.4, 63.4, 61.8, 26.8, 19.2.
Compound 4a: 1H NMR: δ = 7.83-7.80 (m, 2 H), 7.72-7.70 (m, 2 H), 7.70-7.65 (m, 4 H), 7.44-7.35 (m, 6 H), 4.36 (m, 2 H), 3.86 (m, 2 H), 3.74 (t, J = 5.4 Hz, 2 H), 3.65-3.62 (m, 2 H), 3.58-3.56 (m, 2 H), 3.52 (t, J = 5.4 Hz, 2 H), 1.03 (s, 9 H). 13C NMR: δ = 163.4, 135.6, 134.4, 133.7, 129.6, 129.0, 127.6, 123.4, 77.2, 72.4, 70.8, 70.7, 69.4, 63.3, 26.8, 19.2.
Compound 4b: 1H NMR: δ = 7.84-7.81 (m, 2 H), 7.74-7.71 (m, 2 H), 7.70-7.66 (m, 4 H), 7.44-7.34 (m, 6 H), 4.36 (m, 2 H), 3.85 (m, 2 H), 3.79 (t, J = 5.4 Hz, 2 H), 3.67-3.63 (m, 2 H), 3.61-3.52 (m, 8 H), 1.04 (s, 9 H). 13C NMR: δ = 163.4, 135.6, 134.4, 133.7, 129.6, 129.0, 127.6, 77.2, 72.4, 70.8, 70.7, 70.6, 70.5, 69.3, 63.4, 26.8, 19.2.
Compound 5a: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.44-7.35 (m, 6 H), 3.84 (m, 2 H), 3.81 (t, J = 5.4 Hz, 2 H), 3.69-3.59 (m, 8 H), 1.05 (s, 9 H). 13C NMR: δ = 135.6, 133.6, 129.6, 127.6, 74.7, 72.4, 70.7, 70.6, 69.7, 63.4, 26.8, 19.2.
Compound 5b: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.44-7.35 (m, 6 H), 3.85 (m, 2 H), 3.81 (t, J = 5.4 Hz, 2 H), 3.69-3.63 (m, 10 H), 3.60 (t, J = 5.4 Hz, 2 H), 1.05 (s, 9 H). 13C NMR: δ = 135.6, 133.6, 129.6, 127.6, 74.6, 72.4, 70.7, 70.6, 70.5, 70.5, 69.7, 63.4, 26.8, 19.2.
Compound 6a: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.51 (br s, 1 H), 7.44-7.34 (m, 6 H), 4.01 (m, 2 H), 3.82 (t, J = 5.4 Hz, 2 H), 3.72 (m, 2 H), 3.68-3.62 (m, 4 H), 3.61 (t, J = 5.4 Hz, 2 Hz), 1.46 (s, 9 H), 1.05 (s, 9 H). 13C NMR: δ = 156.7, 135.6, 133.6, 129.6, 127.6, 81.5, 75.3, 72.4, 70.7, 70.6, 69.4, 63.4, 28.2, 26.8, 19.2.
Compound 6b: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.62 (br s, 1 H), 7.44-7.34 (m, 6 H), 4.01 (m, 2 H), 3.81 (t, J = 5.4 Hz, 2 H), 3.70 (m, 2 H), 3.67-3.62 (m, 8 H), 3.60 (t, J = 5.4 Hz, 2 H), 1.46 (s, 9 H), 1.05 (s, 9 H). 13C NMR: δ = 156.7, 135.6, 133.6, 129.6, 127.6, 81.4, 75.3, 72.3, 70.7, 70.6, 70.5, 70.5, 69.2, 63.4, 28.2, 26.8, 19.1.
Compound 7a: 1H NMR: δ = 7.82 (br s, 1 H), 4.03 (m, 2 H), 3.76-3.72 (m, 4 H), 3.69 (s, 4 H), 3.64-3.61 (m, 4 H), 2.84 (br s, 1 H), 1.48 (s, 9 H). 13C NMR: δ = 156.8, 81.6, 75.2, 72.6, 70.4, 70.2, 69.2, 61.6, 28.2.
Compound 7b: 1H NMR: δ = 8.08 (br s, 1 H), 4.02 (m, 2 H), 3.74-3.66 (m, 12 H), 3.63 (m, 2 H), 2.80 (br s, 1 H), 1.48 (s, 9 H). 13C NMR: δ = 156.9, 81.4, 75.1, 72.6, 70.6, 70.4, 70.4, 70.3, 69.0, 61.7, 28.2.

24

Compound 9 was obtained as a single isomer: 1H NMR (600 MHz, CDCl3): δ = 8.13 (s, 1 H), 7.58-7.57 (m, 2 H), 7.38-7.36 (m, 3 H), 4.34 (t, J = 4.6 Hz, 2 H), 3.83-3.81 (m, 4 H), 3.70 (app. s, 4 H), 3.46 (t, J = 6.0 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 149.0, 132.2, 129.8, 128.7, 127.0, 73.5, 71.2, 70.7, 70.5, 69.7, 30.3.