Subscribe to RSS
DOI: 10.1055/s-2006-951495
A BF3-Mediated Nitrogen-to-Carbon Rearrangement of N-Protected 2,3-Dihydro-3-hydroxy-1H-benzisoindol-1-ones, and Its Interception for a Facile Preparation of 3-Substituted Benzisoindolones
Publication History
Publication Date:
25 October 2006 (online)

Abstract
A BF3-mediated release of the hydroxy and the nitrogen-protecting group of N-(cumyl or 1,1-diphenylethyl)-2,3-dihydro-3-hydroxy-1H-benzisoindol-1-ones is accompanied by recombination of the nitrogen-protecting unit to the 3-position of the ring system. The addition of sulfur or carbon nucleophiles affords products of preferential capture of the rearrangement intermediate offering a convenient and rapid synthetic route to N-unprotected 2,3-dihydro-3-substituted-1H-benzisoindol-1-ones.
Key words
rearrangements - iminium ions - nucleophile - aromatic metalation - PARP inhibitors
- 1
Albert JS.Ohnmacht C.Bernstein PR.Rumsey WL.Aharony D.Alelyunas Y.Russell DJ.Potts W.Sherwood SA.Shen L.Dedinas RF.Palmer WE.Russell K. J. Med. Chem. 2004, 47: 519 - 2
Baldwin J.Michnoff CH.Malmquist NA.White J.Roth MG.Rathod PK.Phillips MA. J. Biol. Chem. 2005, 280: 21847 - 3
Voets M.Antes I.Scherer C.Mueller-Vieira U.Biemel K.Barassin C.Marchais-Oberwinkler S.Hartmann RW. J. Med. Chem. 2005, 48: 6632 - 4
Greco MN.Hawkins MJ.Powell ET.Almond HR.Corcoran TW.de Garavilla L.Kauffman JA.Recacha R.Chattopadhyay D.Andrade-Gordon P.Maryanoff BE. J. Am. Chem. Soc. 2002, 124: 3810 - 5
de Garavilla L.Greco MN.Sukumar N.Chen Z.-W.Pineda AO.Mathews FS.Di Cera E.Giardino EC.Wells GI.Haertlein BJ.Kauffman JA.Corcoran TW.Derian CK.Eckardt AJ.Damiano BP.Andrade-Gordon P.Maryanoff BE. J. Biol. Chem. 2005, 280: 18001 -
6a
Kohrt JT.Filipski KJ.Rapundalo ST.Cody WL.Edmunds JJ. Tetrahedron Lett. 2000, 41: 6041 -
6b
JiaWu Y.Huang W.Goldman E.Zhang P.Woolfrey J.Wong P.Huang B.Sinha U.Park G.Reed A.Scarborough RM.Zhu B.-Y. Bioorg. Med. Chem. Lett. 2002, 12: 1651 -
6c
Parmee ER.He J.Mastracchio A.Edmondson SD.Colwell L.Eiermann G.Feeney WP.Habulihaz B.He H.Kilburn R.Leiting B.Lyons K.Marsilio F.Patel RA.Petrov A.Di Salvo J.Wu JK.Thornberry NA.Weber AE. Bioorg. Med. Chem. Lett. 2004, 14: 43 -
6d
Gyoergydeak Z.Hadady Z.Felfoeldi N.Krakomperger A.Nagy V.Toth M.Brunyanszki A.Docsa T.Gergely P.Somsak L. Bioorg. Med. Chem. 2004, 12: 4861 - 7
Zhang J.Li J.-H. Drugs Fut. 2002, 27: 371 - 8
Southan GJ.Szabo C. Curr. Med. Chem. 2003, 10: 321 - 9
Jagtap P.Szabo C. Nat. Rev. Drug Discovery 2005, 4: 421 - 10
Lautier D.Lagueux J.Thibodeau J.Menard L.Poirier GG. Mol. Cell. Biochem. 1993, 122: 171 - 11
Armstrong S.Li J.-H.Zhang J.Merrill AR. J. Enzyme Inhib. Med. Chem. 2002, 17: 235 - 12
Yates SP.Taylor PL.Jørgensen R.Ferraris D.Zhang J.Andersen GR.Merrill AR. Biochem. J. 2005, 385: 667 - 13
Dai W.-M.Zhang Y.Zhang Y. Tetrahedron: Asymmetry 2004, 15: 525 - 14
Clayden J.Frampton CS.McCarthy C.Westlund N. Tetrahedron 1999, 55: 14161 - 15
Metallinos C.Nerdinger S.Snieckus V. Org. Lett. 1999, 1: 1183 ; comparable results were found using TFA - 17
Watanabe M.Snieckus V. J. Am. Chem. Soc. 1980, 102: 1457 - 18
Chen CW.Beak P. J. Org. Chem. 1986, 51: 3325 - 19
Bindal RD.Katzenellenbogen JA. J. Org. Chem. 1987, 52: 3181 - 21 The ketimine arising from loss of styryl or 1,1-diphenylethyl cation from 9 may also be implicated in this mechanism. However, efforts to detect or isolate the ketimine and a more stabilized version of it proved fruitless. The analogous cyclic sulfonimines(benzisothiazoles) exhibit more stability and can be obtained by a related N-decumylation/dehydration treatment. See:
Metallinos C. Synlett 2002, 1556 - 22
Ent H.De Koning H.Speckamp WN. J. Org.Chem. 1986, 51: 1687 - 23
Ent H.De Koning H.Speckamp WN. Tetrahedron Lett. 1985, 26: 5105 - 24
Maryanoff BE.Zhang H.-C.Cohen JH.Turchi IJ.Maryanoff CA. Chem. Rev. 2004, 104: 1431 - 25
Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 - Generally cyclic N-acyliminium ion chemistry involves carbon substitution and then introduction of another reagent for nitrogen deprotection, if desired. Some examples of the one-pot realization of both reactions are known:
-
26a
Pinder JL.Weinreb SM. Tetrahedron Lett. 2003, 44: 4141 -
26b
Reichelt A.Bur SK.Martin SF. Tetrahedron 2002, 58: 6323 -
26c
Lundkvist JRM.Wistrand LG.Hacksell U. Tetrahedron Lett. 1990, 31: 719 -
26d
Botman PNM.Dommerholt FJ.de Gelder R.Broxterman QB.Schoemaker HE.Rutjes FPJT.Blaauw RH. Org. Lett. 2004, 6: 4941 -
26e
Granier T.Vasella A. Helv. Chim. Acta 1998, 81: 865 -
26f
Lundkvist JRM.Vargas HM.Caldirola P.Ringdahl B.Hacksell U. J. Med. Chem. 1990, 33: 3182 - 27
Stajer G.Csende F. Curr. Org. Chem. 2005, 9: 1277 - This general family of compounds has biological significance in a variety of areas:
-
28a
Wrobel J.Dietrich A.Woolson SA.Millen J.McCaleb M.Harrison MC.Hohman TC.Sredy J.Sullivan D. J. Med. Chem. 1992, 35: 4613 -
28b
Andrews MD.Brewster AG.Chuhan J.Ibbett AJ.Moloney MG.Prout K.Watkin D. Synthesis 1997, 305 -
28c
Toyooka K,Kanamitsu N,Yoshimura M,Kuriyama H, andTamura T. inventors; WO 048332. ; Chem. Abstr. 2004, 141, 38525 -
28d
Guillaumel J.Leonce S.Pierre A.Renard P.Pfeiffer B.Peruchon L.Arimondo PB.Monneret C. Oncol. Res. 2003, 13: 537 -
28e
Mertens A.Zilch H.Koenig B.Schaefer W.Poll T.Kampe W.Seidel H.Leser U.Leinert H. J. Med. Chem. 1993, 36: 2526 -
30a
Duggan HME.Hitchcock PB.Young DW. Org. Biomol. Chem. 2005, 3: 2287 -
30b
He Y.Moningka R.Lovely CJ. Tetrahedron Lett. 2005, 46: 1251 -
30c
Aggarwal VK.Astle CJ.Iding H.Wirz B.Rogers-Evans M. Tetrahedron Lett. 2005, 46: 945 -
30d
Huang P.-Q.Wei B.-G.Ruan Y.-P. Synlett 2003, 1663 -
30e
Gloanec P.Herve Y.Bremand N.Lecouve J.-P.Breard F.De Nanteuil G. Tetrahedron Lett. 2002, 43: 3499 -
30f
Okitsu O.Suzuki R.Kobayashi S. J. Org. Chem. 2001, 66: 809
References and Notes
Rearrangement products 7 and 8 could be identified through spectral analysis including the observation of vinylic resonances in the 1H NMR spectra. Tertiary alcohols 6, obtained as mixtures of diastereomers, were identified with the assistance of IR spectroscopy and mass spectrometry where applicable. Strong M+ peaks were seen under CI conditions. Full characterization data including elemental analysis or HRMS was obtained for all new compounds. Sample procedure for rearrangement: Isoindolone 3a (154 mg, 0.406 mmol, 1.0 equiv) was dissolved in 2.5 mL dry CH2Cl2 in a flame-dried flask under argon and cooled to 0 °C. Then, BF3·OEt2 (0.06 mL, 0.570 mmol, 1.4 equiv) was dissolved in 2.5 mL of dry CH2Cl2 in a flame-dried flask under argon and transferred to the solution of 3a via cannula, followed by a 2.5 mL CH2Cl2 rinse. The resulting dark brown solution quickly became clear and colorless, and was stirred overnight at r.t. The reaction was quenched with H2O, extracted with CH2Cl2, dried with brine and MgSO4 and concentrated. Flash chromatography with 15% EtOAc in hexane gave 69.0 mg (47% yield) of 7c and 39.6 mg (26% yield) of 6ac.
3-(2,2-Diphenylethenyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one (7c): mp: 199-200 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 9.08 (d, J = 8.3 Hz, 1 H), 8.14 (d, J = 8.4 Hz, 1 H), 8.04 (d, J = 8.2 Hz, 1 H), 7.68-7.65 (m, 1 H), 7.61-7.41 (m, 9 H), 7.29-7.19 (m, 3 H), 5.81 (d, J = 9.9 Hz, 1 H), 5.04 (d, J = 9.9 Hz, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 170.6, 170.5, 147.1, 145.3, 140.6, 138.5, 132.9, 132.7, 129.7, 128.83, 128.77, 128.4, 127.9, 127.8, 127.0, 126.5, 125.5, 125.4, 122.9, 120.8, 55.4. IR (neat) 3447, 1690 cm-1. MS (EI): m/z (%) = 362 (29), 361 (100) [M+], 284 (37). Anal. Calcd (%): C, 86.40; H, 5.30; N, 3.88. Found: C, 86.20; H, 5.54; N, 3.95.
3-(2,2-Diphenyl-2-hydroxyethyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one (6ac): 1H NMR (400 MHz, CDCl3): δ = 8.88 (d, J = 8.3 Hz, 1 H), 7.84 (d, J = 8.3 Hz, 1 H), 7.74 (d, J = 8.1 Hz, 1 H), 7.47-7.36 (m, 4 H), 7.25-7.20 (m, 5 H), 7.15-7.03 (m, 4 H), 4.32 (d, J = 10.4 Hz, 1 H), 2.96 (d, J = 13.8 Hz, 1 H), 2.17 (dd, J = 13.8, 10.4 Hz, 1 H). 13C NMR (75.5 MHz, acetone-d
6): δ = 170.8, 151.8, 149.9, 148.9, 148.8, 147.3, 134.1, 133.2, 130.4, 129.1, 129.0, 128.4, 127.9, 127.6, 127.1, 127.0, 124.3, 121.2, 78.6, 54.2, 47.4. IR (nujol): 3426, 3353, 1668 cm-1. MS (EI): m/z (%) = 379 (8) [M+], 361 (32), 284 (16), 196 (42), 184 (27), 183 (32), 182 (59), 105 (27). MS (CI): m/z (%) = 380 (90) [M + H]+, 362 (44), 213 (53), 200(100), 196 (55), 183 (39). HRMS (EI): m/z calcd for C26H19NO [M - 18]+: 361.1468; found: 361.1470.
Compound 5 and its isomer were not amenable to flash chromatography, but fortunately 5 could be cleanly separated from the more soluble isomer by toluene recrystallization.
29
Representative Procedure.
Isoindolone 3b (125 mg, 0.395 mmol, 1.0 equiv) and allyltrimethylsilane (0.25 mL, 1.57 mmol, 4.0 equiv) were slurried in 2.5 mL of dry CH2Cl2 in a flame-dried flask under argon and cooled to 0 °C. Then, BF3·OEt2 was dissolved in 2.5 mL of dry CH2Cl2 in a flame-dried flask under argon and transferred to the solution of 3b and thiol via cannula, followed by a 2.5 mL CH2Cl2 rinse. The clear colorless reaction mixture was stirred at r.t. overnight before quenching with H2O, extracting with CH2Cl2, drying with brine and MgSO4 and concentrating. Flash chromatography with 20% EtOAc in hexane gave 71 mg (80% yield) of 13.
3-Allyl-2,3-dihydro-1H-benz[e]isoindol-1-one (13): 1H NMR (400 MHz, CDCl3): δ = 9.22 (d, J = 8.4 Hz, 1 H), 8.02 (d, J = 8.4 Hz, 1 H), 7.92 (d, J = 8.4 Hz, 1 H), 7.67 (t, J = 7.2 Hz, 1 H), 7.57 (t, J = 7.2 Hz, 1 H), 7.52 (d, J = 8.4 Hz, 1 H), 5.89-5.78 (m, 1 H), 5.19 (d, J = 16.4 Hz, 1 H), 5.16 (d, J = 10.0 Hz, 1 H), 4.72 (dd, J = 8.0, 4.5 Hz, 1 H), 2.85-2.79 (m, 1 H), 2.42-2.35 (m, 1 H). 13C NMR (100.6 MHz, CDCl3): δ = 171.9, 147.5, 133.1, 133.0, 132.7, 129.5, 128.1, 127.9, 126.5, 125.9, 123.9, 119.6, 119.1, 55.7, 38.7. IR: 3448, 3215, 1690 cm-1. MS (EI): m/z (%) = 223 (8) [M+], 183 (14), 182 (100), 127 (13). Anal. Calcd: C, 80.69; H, 5.87. Found: C, 80.90; H, 5.85.