ABSTRACT
Because ATP-binding cassette (ABC) transporters are important for normal bile secretion, hereditary and acquired ABC transporter defects play a central role in the pathogenesis of cholestasis. Defects of the phospholipid export pump MDR3 (ABCC4 ) result in impaired biliary excretion of phosphatidylcholine and a variety of cholestatic syndromes ranging from progressive familial intrahepatic cholestasis in neonates to biliary cirrhosis in adults. Moreover, MDR3 mutations predispose to cholestasis of pregnancy and drug-induced cholestasis. Because Mdr2 (rodent orthologue of human MDR3 ) knockout mice develop sclerosing cholangitis, it is attractive to speculate that MDR3 defects could also play an important role in cholangiopathies in humans. Indeed, MDR3 variants could play a role as modifier gene in primary biliary cirrhosis and primary sclerosing cholangitis, but their exact role needs further clarification. Impaired biliary phosphatidylcholine excretion has also been reported in total parenteral nutrition-induced cholestasis and bile duct injury following liver transplantation, but a genetic basis for these findings remains to be explored. Several drugs for the treatment of cholestatic liver diseases target MDR3 expression and function, further underscoring the clinical significance of this transport system.
KEYWORDS
ABC transporters - bile acids - phospholipids - cholangitis - vanishing bile duct syndrome
REFERENCES
1
Jansen P L, Muller M.
The molecular genetics of familial intrahepatic cholestasis.
Gut.
2000;
47
1-5
2
Thompson R, Jansen P L.
Genetic defects in hepatocanalicular transport.
Semin Liver Dis.
2000;
20
365-372
3
Jacquemin E.
Progressive familial intrahepatic cholestasis: genetic basis and treatment.
Clin Liver Dis.
2000;
4
753-763
4
Jansen P L, Muller M, Sturm E.
Genes and cholestasis.
Hepatology.
2001;
34
1067-1074
5
Elferink R O, Groen A K.
Genetic defects in hepatobiliary transport.
Biochim Biophys Acta.
2002;
1586
129-145
6
Jansen P L, Sturm E.
Genetic cholestasis, causes and consequences for hepatobiliary transport.
Liver Int.
2003;
23
315-322
7
Oude Elferink R P, Paulusma C C, Groen A K.
Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases.
Gastroenterology.
2006;
130
908-925
8
Pauli-Magnus C, Meier P J.
Hepatocellular transporters and cholestasis.
J Clin Gastroenterol.
2005;
39
S103-S110
9
Pauli-Magnus C, Stieger B, Meier Y et al..
Enterohepatic transport of bile salts and genetics of cholestasis.
J Hepatol.
2005;
43
342-357
10
Saito S, Iida A, Sekine A et al..
Three hundred twenty-six genetic variations in genes encoding nine members of ATP-binding cassette, subfamily B (ABCB/MDR/TAP), in the Japanese population.
J Hum Genet.
2002;
47
38-50
11
Meier Y, Pauli-Magnus C, Zanger U M et al..
Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver.
Hepatology.
2006;
44
62-74
12
Lang T, Haberl M, Jung D et al..
Genetic variability, haplotype structures, and ethnic diversity of hepatic transporters MDR3 (ABCB4) and bile salt export pump (ABCB11).
Drug Metab Dispos.
2006;
34
1582-1599
13
Oude Elferink R P, Groen A K.
Mechanisms of biliary lipid secretion and their role in lipid homeostasis.
Semin Liver Dis.
2000;
20
293-305
14
Fickert P, Fuchsbichler A, Wagner M et al..
Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
Gastroenterology.
2004;
127
261-274
15
Paulusma C C, Oude Elferink R P.
Diseases of intramembranous lipid transport.
FEBS Lett.
2006;
580
5500-5509
16
Oude Elferink R P, Paulusma C C.
Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein).
Pflugers Arch.
2006;
, April 19 (Epub ahead of print)
17
Trauner M, Boyer J L.
Bile salt transporters: molecular characterization, function, and regulation.
Physiol Rev.
2003;
83
633-671
18
Smit J J, Schinkel A H, Oude Elferink R P et al..
Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease.
Cell.
1993;
75
451-462
19
Ruetz S, Gros P.
Phosphatidylcholine translocase: a physiological role for the mdr2 gene.
Cell.
1994;
77
1071-1081
20
Smith A J, Timmermans-Hereijgers J L, Roelofsen B et al..
The human MDR3 P-glycoprotein promotes translocation of phosphatidylcholine through the plasma membrane of fibroblasts from transgenic mice.
FEBS Lett.
1994;
354
263-266
21
Fuchs M, Carey M C, Cohen D E.
Evidence for an ATP-independent long-chain phosphatidylcholine translocator in hepatocyte membranes.
Am J Physiol.
1997;
273
G1312-G1319
22
Strazzabosco M, Fabris L, Spirli C.
Pathophysiology of cholangiopathies.
J Clin Gastroenterol.
2005;
39
S90-S102
23
Zollner G, Marschall H U, Wagner M et al..
Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations.
Mol Pharm.
2006;
3
231-251
24
Wagner M, Trauner M.
Transcriptional regulation of hepatobiliary transport systems in health and disease: implications for a rationale approach to the treatment of intrahepatic cholestasis.
Ann Hepatol.
2005;
4
77-99
25 Geier A, Wagner M, Dietrich C G et al.. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. BBA - MCR 2006 In press
26
Karpen S J.
Nuclear receptor regulation of hepatic function.
J Hepatol.
2002;
36
832-850
27
Boyer J L.
Nuclear receptor ligands: rational and effective therapy for chronic cholestatic liver disease?.
Gastroenterology.
2005;
129
735-740
28
Kok T, Wolters H, Bloks V W et al..
Induction of hepatic ABC transporter expression is part of the PPARalpha-mediated fasting response in the mouse.
Gastroenterology.
2003;
124
160-171
29
Huang L, Zhao A, Lew J L et al..
Farnesoid X receptor activates transcription of the phospholipid pump MDR3.
J Biol Chem.
2003;
278
51085-51090
30
Bhushan A, Slapak C A, Levy S B et al..
Expression of c-fos precedes MDR3 in vincristine and adriamycin selected multidrug resistant murine erythroleukemia cells.
Biochem Biophys Res Commun.
1996;
226
819-821
31
Trauner M, Meier P J, Boyer J L.
Molecular pathogenesis of cholestasis.
N Engl J Med.
1998;
339
1217-1227
32
Trauner M, Wagner M, Fickert P et al..
Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis.
J Clin Gastroenterol.
2005;
39
S111-S124
33
van Mil S W, Klomp L W, Bull L N et al..
FIC1 disease: a spectrum of intrahepatic cholestatic disorders.
Semin Liver Dis.
2001;
21
535-544
34
Paulusma C C, Oude Elferink R P.
The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease.
Biochim Biophys Acta.
2005;
1741
11-24
35
Thompson R, Strautnieks S.
BSEP: function and role in progressive familial intrahepatic cholestasis.
Semin Liver Dis.
2001;
21
545-550
36
van Mil S W, van der Woerd W L, van der Brugge G et al..
Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11.
Gastroenterology.
2004;
127
379-384
37
Noe J, Kullak-Ublick G A, Jochum W et al..
Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis.
J Hepatol.
2005;
43
536-543
38
Jacquemin E.
Role of multidrug resistance 3 deficiency in pediatric and adult liver disease: one gene for three diseases.
Semin Liver Dis.
2001;
21
551-562
39
Jacquemin E, de Vree J M, Cresteil D et al..
The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood.
Gastroenterology.
2001;
120
1448-1458
40
Chen H L, Chang P S, Hsu H C et al..
Progressive familial intrahepatic cholestasis with high gamma-glutamyltranspeptidase levels in Taiwanese infants: role of MDR3 gene defect?.
Pediatr Res.
2001;
50
50-55
41
Feranchak A P, Sokol R J.
Cholangiocyte biology and cystic fibrosis liver disease.
Semin Liver Dis.
2001;
21
471-488
42
Fickert P, Zollner G, Fuchsbichler A et al..
Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles.
Gastroenterology.
2002;
123
1238-1251
43
Lammert F, Wang D Q, Hillebrandt S et al..
Spontaneous cholecysto- and hepatolithiasis in Mdr2 - / - mice: a model for low phospholipid-associated cholelithiasis.
Hepatology.
2004;
39
117-128
44
Mauad T H, van Nieuwkerk C M, Dingemans K P et al..
Mice with homozygous disruption of the mdr2 P-glycoprotein gene: a novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis.
Am J Pathol.
1994;
145
1237-1245
45
Pikarsky E, Porat R M, Stein I et al..
NF-kappaB functions as a tumour promoter in inflammation-associated cancer.
Nature.
2004;
431
461-466
46
Fickert P, Wagner M, Marschall H U et al..
24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
Gastroenterology.
2006;
130
465-481
47
Wang R, Salem M, Yousef I M et al..
Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis.
Proc Natl Acad Sci USA.
2001;
98
2011-2016
48
de Vree J M, Romijn J A, Mok K S et al..
Lack of enteral nutrition during critical illness is associated with profound decrements in biliary lipid concentrations.
Am J Clin Nutr.
1999;
70
70-77
49
Shoda J, Oda K, Suzuki H et al..
Etiologic significance of defects in cholesterol, phospholipid, and bile acid metabolism in the liver of patients with intrahepatic calculi.
Hepatology.
2001;
33
1194-1205
50
Geuken E, Visser D, Kuipers F et al..
Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation.
J Hepatol.
2004;
41
1017-1025
51
Lammert F, Marschall H U, Glantz A et al..
Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management.
J Hepatol.
2000;
33
1012-1021
52
Riely C A, Bacq Y.
Intrahepatic cholestasis of pregnancy.
Clin Liver Dis.
2004;
8
167-176
53
Poupon R.
Intrahepatic cholestasis of pregnancy: from bedside to bench to bedside.
Liver Int.
2005;
25
467-468
54
Lucena J F, Herrero J I, Quiroga J et al..
A multidrug resistance 3 gene mutation causing cholelithiasis, cholestasis of pregnancy, and adulthood biliary cirrhosis.
Gastroenterology.
2003;
124
1037-1042
55
Ropponen A, Sund R, Riikonen S et al..
Intrahepatic cholestasis of pregnancy as an indicator of liver and biliary diseases: a population-based study.
Hepatology.
2006;
43
723-728
56
Beuers U, Pusl T.
Intrahepatic cholestasis of pregnancy: a heterogeneous group of pregnancy-related disorders?.
Hepatology.
2006;
43
647-649
57
Locatelli A, Roncaglia N, Arreghini A et al..
Hepatitis C virus infection is associated with a higher incidence of cholestasis of pregnancy.
Br J Obstet Gynaecol.
1999;
106
498-500
58
Paternoster D M, Fabris F, Palu G et al..
Intra-hepatic cholestasis of pregnancy in hepatitis C virus infection.
Acta Obstet Gynecol Scand.
2002;
81
99-103
59
Reyes H, Zapata R, Hernandez I et al..
Is a leaky gut involved in the pathogenesis of intrahepatic cholestasis of pregnancy?.
Hepatology.
2006;
43
715-722
60
Lucena J F, Herrero J I, Quiroga J et al..
Reply to “Is intrahepatic cholestasis of pregnancy an MDR3-related disease?”.
Gastroenterology.
2003;
125
1923-1924
61
Bacq Y, Sapey T, Brechot M C et al..
Intrahepatic cholestasis of pregnancy: a French prospective study.
Hepatology.
1997;
26
358-364
62
Milkiewicz P, Gallagher R, Chambers J et al..
Obstetric cholestasis with elevated gamma glutamyl transpeptidase: incidence, presentation and treatment.
J Gastroenterol Hepatol.
2003;
18
1283-1286
63
de Vree J M, Jacquemin E, Sturm E et al..
Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis.
Proc Natl Acad Sci USA.
1998;
95
282-287
64
Jacquemin E, Cresteil D, Manouvrier S et al..
Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy [letter].
Lancet.
1999;
353
210-211
65
Dixon P H, Weerasekera N, Linton K J et al..
Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking.
Hum Mol Genet.
2000;
9
1209-1217
66
Gendrot C, Bacq Y, Brechot M C et al..
A second heterozygous MDR3 nonsense mutation associated with intrahepatic cholestasis of pregnancy.
J Med Genet.
2003;
40
e32
67
Mullenbach R, Linton K J, Wiltshire S et al..
ABCB4 gene sequence variation in women with intrahepatic cholestasis of pregnancy.
J Med Genet.
2003;
40
e70
68
Pauli-Magnus C, Lang T, Meier Y et al..
Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy.
Pharmacogenetics.
2004;
14
91-102
69
Floreani A, Carderi I, Paternoster D et al..
Intrahepatic cholestasis of pregnancy: three novel MDR3 gene mutations.
Aliment Pharmacol Ther.
2006;
23
1649-1653
70
Wasmuth H E, Glantz A, Keppeler H et al..
Intrahepatic cholestasis of pregnancy: the severe form is associated with common variants of the hepatobiliary phospholipid transporter gene ABCB4.
Gut.
2006; August 4;
, (Epub ahead of print)
71
Eloranta M L, Heiskanen J T, Hiltunen M J et al..
Multidrug resistance 3 gene mutation 1712delT and estrogen receptor alpha gene polymorphisms in Finnish women with obstetric cholestasis.
Eur J Obstet Gynecol Reprod Biol.
2002;
105
132-135
72
Savander M, Ropponen A, Avela K et al..
Genetic evidence of heterogeneity in intrahepatic cholestasis of pregnancy.
Gut.
2003;
52
1025-1029
73
Debry P, Nash E A, Neklason D W et al..
Role of multidrug resistance P-glycoproteins in cholesterol esterification.
J Biol Chem.
1997;
272
1026-1031
74
Rosmorduc O, Hermelin B, Poupon R.
MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis.
Gastroenterology.
2001;
120
1459-1467
75
Rosmorduc O, Hermelin B, Boelle P Y et al..
ABCB4 gene mutation-associated cholelithiasis in adults.
Gastroenterology.
2003;
125
452-459
76
Arrese M, Accatino L.
Is intrahepatic cholestasis of pregnancy an MDR3-related disease?.
Gastroenterology.
2003;
125
1922-1923
77
Ganne-Carrie N, Baussan C, Grando V et al..
Progressive familial intrahepatic cholestasis type 3 revealed by oral contraceptive pills.
J Hepatol.
2003;
38
693-694
78
Jansen P L, Strautnieks S S, Jacquemin E et al..
Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis.
Gastroenterology.
1999;
117
1370-1379
79
Eloranta M L, Hakli T, Hiltunen M et al..
Association of single nucleotide polymorphisms of the bile salt export pump gene with intrahepatic cholestasis of pregnancy.
Scand J Gastroenterol.
2003;
38
648-652
80
Hinoshita E, Taguchi K, Inokuchi A et al..
Decreased expression of an ATP-binding cassette transporter, MRP2, in human livers with hepatitis C virus infection.
J Hepatol.
2001;
35
765-773
81
Stieger B, Fattinger K, Madon J et al..
Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver.
Gastroenterology.
2000;
118
422-430
82
Maddrey W C.
Drug-induced hepatotoxicity: 2005.
J Clin Gastroenterol.
2005;
39
S83-S89
83
Kaplowitz N.
Idiosyncratic drug hepatotoxicity.
Nat Rev Drug Discov.
2005;
4
489-499
84
Navarro V J, Senior J R.
Drug-related hepatotoxicity.
N Engl J Med.
2006;
354
731-739
85
Pauli-Magnus C, Meier P J.
Pharmacogenetics of hepatocellular transporters.
Pharmacogenetics.
2003;
13
189-198
86
Meier Y, Stieger B, Zodan-Marin T et al..
ABCB11 polymorphism 1457T > C (V444A) of the bile salt export pump (BSEP) associates with drug-induced cholestasis and intrahepatic cholestasis of pregnancy.
Hepatology.
2005;
42(suppl.1)
513A
87
Lang C, Meier Y, Stieger B et al..
Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury.
Pharmacogenet Genomics.
2006;
, In press
88
Smith A J, van Helvoort A, van Meer G et al..
MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping.
J Biol Chem.
2000;
275
23530-23539
89
Bramow S, Ott P, Thomsen N F et al..
Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (rapamycin).
Pharmacol Toxicol.
2001;
89
133-139
90
Elamiri A, Perwaiz S, Tuchweber B et al..
Effect of mdr2 mutation with combined tandem disruption of canalicular glycoprotein transporters by cyclosporine A on bile formation in mice.
Pharmacol Res.
2003;
48
467-472
91
Fattinger K, Funk C, Pantze M et al..
The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions.
Clin Pharmacol Ther.
2001;
69
223-231
92
Bode K A, Donner M G, Leier I et al..
Inhibition of transport across the hepatocyte canalicular membrane by the antibiotic fusidate.
Biochem Pharmacol.
2002;
64
151-158
93
Fouassier L, Kinnman N, Lefevre G et al..
Contribution of mrp2 in alterations of canalicular bile formation by the endothelin antagonist bosentan.
J Hepatol.
2002;
37
184-191
94
Talwalkar J A, Lindor K D.
Primary sclerosing cholangitis.
Inflamm Bowel Dis.
2005;
11
62-72
95
O'Mahony C A, Vierling J M.
Etiopathogenesis of primary sclerosing cholangitis.
Semin Liver Dis.
2006;
26
3-21
96
Levy C, Lindor K D.
Primary sclerosing cholangitis: epidemiology, natural history, and prognosis.
Semin Liver Dis.
2006;
26
22-30
97
Lazaridis K N, Strazzabosco M, LaRusso N F.
The cholangiopathies: disorders of biliary epithelia.
Gastroenterology.
2004;
127
1565-1577
98
Pauli-Magnus C, Kerb R, Fattinger K et al..
BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis.
Hepatology.
2004;
39
779-791
99
Wasmuth H E, Matern S, Lammert F.
From genotypes to haplotypes in hepatobiliary diseases: one plus one equals (sometimes) more than two.
Hepatology.
2004;
39
604-607
100
Rosmorduc O, Hermelin B, Boelle P Y et al..
ABCB4 gene mutations and primary sclerosing cholangitis.
Gastroenterology.
2004;
126
1220-1222
101 de Vree J M. Defects in Hepatobiliary Transport: Genetics and Therapy of Progressive Familial Intrahepatic Cholestasis Type 3 [thesis]. Amsterdam: University of Amsterdam 1999: 32
102
Kaw M, Silverman W B, Rabinovitz M et al..
Biliary tract calculi in primary sclerosing cholangitis.
Am J Gastroenterol.
1995;
90
72-75
103
Hartmann G, Kim H, Piquette-Miller M.
Regulation of the hepatic multidrug resistance gene expression by endotoxin and inflammatory cytokines in mice.
Int Immunopharmacol.
2001;
1
189-199
104
Tygstrup N, Bangert K, Ott P et al..
Messenger RNA profiles in liver injury and stress: a comparison of lethal and nonlethal rat models.
Biochem Biophys Res Commun.
2002;
290
518-525
105
Teng S, Piquette-Miller M.
The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice.
J Pharmacol Exp Ther.
2005;
312
841-848
106
Karlsen T H, Lie B A, Frey Froslie K et al..
Polymorphisms in the steroid and xenobiotic receptor gene influence survival in primary sclerosing cholangitis.
Gastroenterology.
2006;
131
781-787
107
Durieu I, Pellet O, Simonot L et al..
Sclerosing cholangitis in adults with cystic fibrosis: a magnetic resonance cholangiographic prospective study.
J Hepatol.
1999;
30
1052-1056
108
Colombo C, Battezzati P M.
Liver involvement in cystic fibrosis: primary organ damage or innocent bystander?.
J Hepatol.
2004;
41
1041-1044
109
Waters D L, Dorney S F, Gruca M A et al..
Hepatobiliary disease in cystic fibrosis patients with pancreatic sufficiency.
Hepatology.
1995;
21
963-969
110
Strandvik B, Bronnegard M, Gilljam H et al..
Relation between defective regulation of arachidonic acid release and symptoms in cystic fibrosis.
Scand J Gastroenterol Suppl.
1988;
143
1-4
111
Blanco P G, Zaman M M, Junaidi O et al..
Induction of colitis in cftr - / - mice results in bile duct injury.
Am J Physiol Gastrointest Liver Physiol.
2004;
287
G491-G496
112
Spirli C, Nathanson M H, Fiorotto R et al..
Proinflammatory cytokines inhibit secretion in rat bile duct epithelium.
Gastroenterology.
2001;
121
156-169
113
Spirli C, Fabris L, Duner E et al..
Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes.
Gastroenterology.
2003;
124
737-753
114
Pall H, Zaman M M, Andersson C et al..
Decreased peroxisome proliferator activated receptor alpha is associated with bile duct injury in cystic fibrosis transmembrane conductance regulator - / - mice.
J Pediatr Gastroenterol Nutr.
2006;
42
275-281
115
Kok T, Bloks V W, Wolters H et al..
Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice.
Biochem J.
2003;
369
539-547
116
Wagner M, Halilbasic E, Marschall H U et al..
CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice.
Hepatology.
2005;
42
420-430
117
Sheth S, Shea J C, Bishop M D et al..
Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis.
Hum Genet.
2003;
113
286-292
118
McGill J M, Williams D M, Hunt C M.
Survey of cystic fibrosis transmembrane conductance regulator genotypes in primary sclerosing cholangitis.
Dig Dis Sci.
1996;
41
540-542
119
Girodon E, Sternberg D, Chazouilleres O et al..
Cystic fibrosis transmembrane conductance regulator (CFTR) gene defects in patients with primary sclerosing cholangitis.
J Hepatol.
2002;
37
192-197
120
Gallegos-Orozco J F, Yurk E, Wang N et al..
Lack of association of common cystic fibrosis transmembrane conductance regulator gene mutations with primary sclerosing cholangitis.
Am J Gastroenterol.
2005;
100
874-878
121
Juran B D, Lazaridis K N.
Genetics of hepatobiliary diseases.
Clin Gastroenterol Hepatol.
2006;
4
548-557
122
Kaplan M M, Gershwin M E.
Primary biliary cirrhosis.
N Engl J Med.
2005;
353
1261-1273
123
Oude Elferink RP, Groen A K.
The role of mdr2 P-glycoprotein in biliary lipid secretion: cross-talk between cancer research and biliary physiology.
J Hepatol.
1995;
23
617-625
124
Dumoulin F L, Reichel C, Sauerbruch T et al..
Semiquantitation of intrahepatic MDR3 mRNA levels by reverse transcription/competitive polymerase chain reaction.
J Hepatol.
1997;
26
852-856
125
Zollner G, Fickert P, Zenz R et al..
Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases.
Hepatology.
2001;
33
633-646
126
Zollner G, Fickert P, Silbert D et al..
Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis.
J Hepatol.
2003;
38
717-727
127
Joshi S, Cauch-Dudek K, Heathcote E J et al..
Antimitochondrial antibody profiles: are they valid prognostic indicators in primary biliary cirrhosis?.
Am J Gastroenterol.
2002;
97
999-1002
128
Graziadei I W.
Recurrence of primary sclerosing cholangitis after liver transplantation.
Liver Transpl.
2002;
8
575-581
129
Neuberger J.
Recurrent primary biliary cirrhosis.
Liver Transpl.
2003;
9
539-546
130
Hoekstra H, Porte R J, Tian Y et al..
Bile salt toxicity aggravates cold ischemic injury of bile ducts after liver transplantation in Mdr2 + / - mice.
Hepatology.
2006;
43
1022-1031
131
Shoda J, Inada Y, Osuga T.
Molecular pathogenesis of hepatolithiasis: a type of low phospholipid-associated cholelithiasis.
Front Biosci.
2006;
11
669-675
132
Kano M, Shoda J, Sumazaki R et al..
Mutations identified in the human multidrug resistance P-glycoprotein 3 (ABCB4) gene in patients with primary hepatolithiasis.
Hepatol Res.
2004;
29
160-166
133
Kim W R, Ludwig J, Lindor K D.
Variant forms of cholestatic diseases involving small bile ducts in adults.
Am J Gastroenterol.
2000;
95
1130-1138
134
Bruguera M, Llach J, Rodes J.
Nonsyndromic paucity of intrahepatic bile ducts in infancy and idiopathic ductopenia in adulthood: the same syndrome?.
Hepatology.
1992;
15
830-834
135
Ludwig J.
Idiopathic adulthood ductopenia: an update.
Mayo Clin Proc.
1998;
73
285-291
136
Trauner M, Boyer J L.
Cholestatic syndromes.
Curr Opin Gastroenterol.
2001;
17
242-256
137
Ziol M, Frassati-Biaggi A, Hermelin B et al..
Liver histology in multidrug-resistance-3P-glycoprotein heterozygous gene mutations adult carriers: high prevalence of fibrosis.
Hepatology.
2005;
42
461A
138
Sandhu I S, Jarvis C, Everson G T.
Total parenteral nutrition and cholestasis.
Clin Liver Dis.
1999;
3
489-508
139
Tazuke Y, Kiristioglu I, Heidelberger K P et al..
Hepatic P-glycoprotein changes with total parenteral nutrition administration.
JPEN J Parenter Enteral Nutr.
2004;
28
1-6
140
Nishimura M, Yamaguchi M, Yamauchi A et al..
Role of soybean oil fat emulsion in the prevention of hepatic xenobiotic transporter mRNA up- and down-regulation induced by overdose of fat-free total parenteral nutrition in infant rats.
Drug Metab Pharmacokinet.
2005;
20
46-54
141
Trauner M, Fickert P, Stauber R E.
Inflammation-induced cholestasis.
J Gastroenterol Hepatol.
1999;
14
946-959
142
Geier A, Fickert P, Trauner M.
Mechanisms of disease: mechanisms and clinical implications of cholestasis in sepsis.
Nat Clin Pract Gastroenterol Hepatol.
2006;
3
574-585
143
Vos T A, Hooiveld G J, Koning H et al..
Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver.
Hepatology.
1998;
28
1637-1644
144
Schmitt M, Kolbel C B, Muller M K et al..
[Sclerosing cholangitis after burn injury].
Z Gastroenterol.
1997;
35
929-934
145
Scheppach W, Druge G, Wittenberg G et al..
Sclerosing cholangitis and liver cirrhosis after extrabiliary infections: report on three cases.
Crit Care Med.
2001;
29
438-441
146
Engler S, Elsing C, Flechtenmacher C et al..
Progressive sclerosing cholangitis after septic shock: a new variant of vanishing bile duct disorders.
Gut.
2003;
52
688-693
147
Benninger J, Grobholz R, Oeztuerk Y et al..
Sclerosing cholangitis following severe trauma: description of a remarkable disease entity with emphasis on possible pathophysiologic mechanisms.
World J Gastroenterol.
2005;
11
4199-4205
148
Gossard A A, Angulo P, Lindor K D.
Secondary sclerosing cholangitis: a comparison to primary sclerosing cholangitis.
Am J Gastroenterol.
2005;
100
1330-1333
149
Jaeger C, Mayer G, Henrich R et al..
Secondary sclerosing cholangitis after long-term treatment in an intensive care unit: clinical presentation, endoscopic findings, treatment, and follow-up.
Endoscopy.
2006;
38
730-734
150
Elferink R P, Ottenhoff R, van Marle J et al..
Class III P-glycoproteins mediate the formation of lipoprotein X in the mouse.
J Clin Invest.
1998;
102
1749-1757
151
Barbu W D, Corpechot C, Ping C et al..
Allelic variations of hepatobiliary transporters and nuclear receptors genes determine disease behavior in primary biliary cirrhosis.
Hepatology.
2005;
42
208A-209A
152
Paumgartner G, Beuers U.
Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited.
Hepatology.
2002;
36
525-531
153
Beuers U.
Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis.
Nat Clin Pract Gastroenterol Hepatol.
2006;
3
318-328
154
Paumgartner G, Beuers U.
Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease.
Clin Liver Dis.
2004;
8
67-81
155
Trauner M, Graziadei I W.
Review article: mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases.
Aliment Pharmacol Ther.
1999;
13
979-996
156
Stiehl A, Rudolph G, Sauer P et al..
Biliary secretion of bile acids and lipids in primary sclerosing cholangitis: influence of cholestasis and effect of ursodeoxycholic acid treatment.
J Hepatol.
1995;
23
283-289
157
Marschall H U, Wagner M, Zollner G et al..
Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans.
Gastroenterology.
2005;
129
476-485
158
Yoon Y B, Hagey L R, Hofmann A F et al..
Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents.
Gastroenterology.
1986;
90
837-852
159
Hofmann A F, Zakko S F, Lira M et al..
Novel biotransformation and physiological properties of norursodeoxycholic acid in humans.
Hepatology.
2005;
42
1391-1398
160
Liu Y, Binz J, Numerick M J et al..
Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis.
J Clin Invest.
2003;
112
1678-1687
161
Fiorucci S, Clerici C, Antonelli E et al..
Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor (FXR) ligand, in estrogen-induced cholestasis.
J Pharmacol Exp Ther.
2005;
313
604-612
162
Pellicciari R, Fiorucci S, Camaioni E et al..
6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity.
J Med Chem.
2002;
45
3569-3572
163
Wagner M, Fickert P, Zollner G et al..
Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice.
Gastroenterology.
2003;
125
825-838
164
Stedman C, Liddle C, Coulter S et al..
Benefit of farnesoid X receptor inhibition in obstructive cholestasis.
Proc Natl Acad Sci USA.
2006;
103
11323-11328
165
Trauner M.
The nuclear bile acid receptor FXR as a novel therapeutic target in cholestatic liver diseases: hype or hope?.
Hepatology.
2004;
40
260-263
166
Shoda J, Inada Y, Tsuji A et al..
Bezafibrate stimulates canalicular localization of NBD-labeled PC in HepG2 cells by PPARalpha-mediated redistribution of ABCB4.
J Lipid Res.
2004;
45
1813-1825
167
Miranda S, Vollrath V, Wielandt A M et al..
Overexpression of mdr2 gene by peroxisome proliferators in the mouse liver.
J Hepatol.
1997;
26
1331-1339
168
Chianale J, Vollrath V, Wielandt A M et al..
Fibrates induce mdr2 gene expression and biliary phospholipid secretion in the mouse.
Biochem J.
1996;
314
781-786
169
Kurihara T, Niimi A, Maeda A et al..
Bezafibrate in the treatment of primary biliary cirrhosis: comparison with ursodeoxycholic acid.
Am J Gastroenterol.
2000;
95
2990-2992
170
Nakai S, Masaki T, Kurokohchi K et al..
Combination therapy of bezafibrate and ursodeoxycholic acid in primary biliary cirrhosis: a preliminary study.
Am J Gastroenterol.
2000;
95
326-327
171
Ohmoto K, Mitsui Y, Yamamoto S.
Effect of bezafibrate in primary biliary cirrhosis: a pilot study.
Liver.
2001;
21
223-224
172
Kurihara T, Maeda A, Shigemoto M et al..
Investigation into the efficacy of bezafibrate against primary biliary cirrhosis, with histological references from cases receiving long term monotherapy.
Am J Gastroenterol.
2002;
97
212-214
173
Yano K, Kato H, Morita S et al..
Is bezafibrate histologically effective for primary biliary cirrhosis?.
Am J Gastroenterol.
2002;
97
1075-1077
174
Ritzel U, Leonhardt U, Nather M et al..
Simvastatin in primary biliary cirrhosis: effects on serum lipids and distinct disease markers.
J Hepatol.
2002;
36
454-458
175
Hooiveld G J, Vos T A, Scheffer G L et al..
3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) induce hepatic expression of the phospholipid translocase mdr2 in rats.
Gastroenterology.
1999;
117
678-687
176
Carrella M, Feldman D, Cogoi S et al..
Enhancement of mdr2 gene transcription mediates the biliary transfer of phosphatidylcholine supplied by an increased biosynthesis in the pravastatin-treated rat.
Hepatology.
1999;
29
1825-1832
177
Takemoto M, Liao J K.
Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors.
Arterioscler Thromb Vasc Biol.
2001;
21
1712-1719
178
Hansson G K.
Inflammation, atherosclerosis, and coronary artery disease.
N Engl J Med.
2005;
352
1685-1695
179
de Vree J M, Ottenhoff R, Bosma P J et al..
Correction of liver disease by hepatocyte transplantation in a mouse model of progressive familial intrahepatic cholestasis.
Gastroenterology.
2000;
119
1720-1730
180
Smith A J, de Vree J M, Ottenhoff R et al..
Hepatocyte-specific expression of the human MDR3 P-glycoprotein gene restores the biliary phosphatidylcholine excretion absent in Mdr2 (- / -) mice.
Hepatology.
1998;
28
530-536
181
Oude Elferink R P.
Manipulation of biliary lipids by gene therapy: potential consequences for patients with progressive familial intrahepatic cholestasis.
Curr Drug Targets Immune Endocr Metabol Disord.
2005;
5
199-202
182
Keitel V, Vogt C, Haussinger D, Kubitz R.
Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy.
Gastroenterology.
2006;
131
624-629
Michael TraunerM.D.
Professor of Medicine and Molecular Hepatology, Laboratory for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine
Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria