Subscribe to RSS
DOI: 10.1055/s-2007-1072751
Synthesis of Pyrido[3,2-b]carbazolequinones Involving N-Arylation of 5,8-Dimethoxy-6-nitroquinolines by Aryl Grignard Reagents and a New One-Pot, Palladium-Promoted Oxidative Coupling-Oxidative Demethylation Sequence
Publication History
Publication Date:
07 May 2008 (online)
Abstract
The reaction between a 5,8-dimethyxy-6-nitrocarbostyril derivative and arylmagnesium bromides gave 6-arylaminocarbostyrils as the major products. Their subsequent treatment with palladium acetate in refluxing acetic acid gave linear pyrido[3,2-b]carbazolequinones in one step, involving the unprecedented oxidative demethylation of 1,4-dimethoxybenzene systems to the corresponding quinones by palladium acetate. A palladium-calalyzed oxidative functionalization of an unactivated C-H bond was also observed.
Key words
N-arylation - organomagnesium reagents - palladium catalysts - oxidative demethylation - oxidative C-H activation
- 1
Cashman DJ.Kellogg GE. J. Med. Chem. 2004, 47: 1360 - 2
Gewirtz DA. Biochem. Pharmacol. 1999, 57: 727 -
3a
Minotti G.Menna P.Salvatorelli E.Cairo G.Gianni L. Pharmacol. Rev. 2004, 56: 185 -
3b
Taatjes DJ.Koch TH. Curr. Med. Chem. 2001, 8: 15 - For reviews on the medicinal chemistry of azaanthra-quinones, see:
-
4a
Krapcho AP.Maresch MJ.Hacker MP.Hazelhurst L.Menta E.Oliva A.Spinelli S.Beggiolin G.Giuliani FG.Pezzoni G.Tognella S. Curr. Med. Chem. 1995, 2: 803 -
4b
Sissi C.Palumbo C. Curr. Top. Med. Chem. 2004, 4: 219 - 5
Borchmann P.Reiser M. IDrugs 2003, 6: 486 -
6a
Garbett NC.Graves DE. Curr. Med. Chem.: Anti-Cancer Agents 2004, 4: 149 -
6b
Stiborová M.Sejbal J.Borek-Dohalská L.Aimová D.Poljaková J.Forsterová K.Rupertová M.Wiesner J.Husecek J.Wiessler M.Frei E. Cancer Res. 2004, 64: 8374 -
7a
Chen X.Smith GD.Waring PW. J. Appl. Phycol. 2003, 15: 269 -
7b
Bernardo PH.Chai CLL.Heath GA.Mahon PJ.Smith GD.Waring P.Wilkes BA. J. Med. Chem. 2004, 47: 4958 -
8a
Rickards RW.Rothschild JM.Willis AJ.de Chazal NM.Kirk J.Kirk K.Saliba KJ.Smith GD. Tetrahedron 1999, 55: 13513 -
8b
Doan NT.Rickards RW.Rothschild JM.Smith GD. J. Appl. Phycol. 2000, 12: 409 -
8c
Doan NT.Stewart PR.Smith GD. FEMS Microbiol. Lett. 2001, 196: 135 - For a review, see:
-
9a
Avendaño C.Menéndez JC. Recent Res. Devel. Org. Chem. 1998, 2: 69 - For selected additional work, see:
-
9b
Pérez JM.López-Alvarado P.Alonso MA.Avendaño C.Menéndez JC. Tetrahedron Lett. 1996, 37: 6955 -
9c
Pérez JM.Avendaño C.Menéndez JC. Tetrahedron Lett. 1997, 38: 4717 -
9d
Pascual-Alfonso E.Avendaño C.Menéndez JC. Synlett 2000, 205 -
9e
Pérez JM.López-Alvarado P.Avendaño C.Menéndez JC. Tetrahedron 2000, 56: 1561 -
9f
Alonso MA.López-Alvarado P.Avendaño C.Menéndez JC. Tetrahedron 2003, 59: 2821 -
9g
Sánchez JD.Cledera P.Perumal S.Avendaño C.Menéndez JC. Synlett 2007, 2805 - 10
Bartoli G.Bosco M.Cantagalli G.Dalpozzo R.
J. Chem. Soc., Perkin Trans. 2 1985, 773 - 11
Avendaño C.de la Cuesta E.Gesto C. Synthesis 1991, 727 - For an overview of methods for diarylamine synthesis, see:
-
13a
Sapountzis I.Knochel P. Angew. Chem. Int. Ed. 2004, 43: 897 - For some more recent methods, see:
-
13b
Ballini R.Barboni L.Femoni C.Giarlo G.Palmieri A. Tetrahedron Lett. 2006, 47: 2295 -
13c
Sridharan V.Karthikeyan K.Muthusubramanian S. Tetrahedron Lett. 2006, 47: 4221 -
14a
Sapountizis I.Knochel P. J. Am. Chem. Soc. 2002, 124: 9390 -
14b For a short review of
the reactions between Grignard reagents and nitroarenes, see:
Ricci A.Fochi M. Angew. Chem. Int. Ed. 2003, 42: 1444 - 15
Bartoli G. Acc. Chem. Res. 1984, 17: 109 -
16a
Li JJ.Gribble GW. Palladium in Heterocyclic Chemistry Vol. 20: Tetrahedron Organic Chemistry Series, Pergamon; New York: 2000. Chap. 1 and 3. -
16b
Knölker H.-J.Reddy KR. Chem. Rev. 2002, 102: 4303 - For some recent examples of this transformation, see:
-
18a
Pérez JM.López-Alvarado P.Avendaño C.Menéndez JC. Tetrahedron Lett. 1998, 39: 673 -
18b
De la Fuente JA.Martín MJ.Blanco MM.Pascual-Alfonso E.Avendaño C.Menéndez JC. Bioorg. Med. Chem. 2001, 9: 1807 - 19 For a review of transition-metal-catalyzed
oxidative functionalization of carbon-hydrogen bonds, see:
Dick AR.Sanford MS. Tetrahedron 2006, 62: 2439 - For reviews of some aspects of oxidations catalyzed by palladium(II) species, see.
-
20a
Muzart J. Tetrahedron 2003, 59: 5789 -
20b
Stahl SS. Angew. Chem. Int. Ed. 2004, 43: 3400 -
20c
Sigman MS.Schultz MJ. Org. Biomol. Chem. 2004, 2: 2551 - 21 For a recent summary of the synthetic
applications of palladium acetate, see:
Vats RK. Synlett 2006, 329 - 22
Tanoue Y.Terada A. Bull. Chem. Soc. Jpn. 1988, 61: 2039 - 23 For mechanistic discussions involving
palladium enolate complexes, see:
Culkin DA.Hartwig JF. Acc. Chem. Res. 2003, 36: 234
References and Notes
Representative
Procedure
To a solution of 1,4-dimethyl-5,8-dimethoxy-6-nitro-2 (1H)-quinolin-2-one (1 g, 3.59 mmol) was
added p-tolylmagnesium bromide (10.8
mL of a 1 M soln in THF, 10.8 mmol). The reaction mixture was stirred
at -48 ˚C for 1 h and poured onto a sat.
aq soln of NH4Cl (15 mL), which was extracted with EtOAc
(3 × 20 mL). The combined organic layers
were washed with brine (2 × 15 mL), dried over
Na2SO4, and evaporated. Chromatography of
the residue on silica gel, eluting with a PE-EtOAc gradient, gave
534 mg (44%) of 1,4-dimethyl-5,8-dimethoxy-6-(p-tolylamino)-2 (1H)-quinolin-2-one
(5c), as a pale brown oil, and 218 mg (18%)
of 1,4-dimethyl-8-methoxy-6-nitro-5-(p-tolyl)-2
(1H)-quinolin-2-one (6c),
as a pale brown solid.
5c: IR
(KBr): 3365, 2922, 1646, 1599, 1516, 1455 cm-¹. ¹H NMR
(250 MHz, CDCl3): δ = 7.12 (d, 2 H, J = 8.3 Hz,
H-2′, H-5′), 7.06 (s, 1 H, H-7), 7.01 (d, 2 H, J = 8.3 Hz,
H-3′, H-5′), 6.50 (d, 1 H, J = 1.0
Hz, H-3), 5.98 (br s, 1 H, NH), 3.81 (s, 3 H, NCH3),
3.75 (s, 3 H, C5-OCH3), 3.67 (s, 3 H, C8-CH3),
2.60 (d, 3 H, J = 1.0
Hz, C4-CH3), 2.31 (s, 3 H, C4′-CH3)
ppm. ¹³C NMR (62.9 MHz, CDCl3): δ = 163.18
(CO), 145.95 (C-1′), 145.93 (C-4), 141.15 (C-8), 140.71
(C-5), 131.31 (C-6), 130.48 (C-3′, C-5′), 127.15
(C-4′), 123.82 (C-3), 118.74 (C-2′, C-6′),
118.63 (C-4a), 113.15 (C-8a), 105.93 (C-7), 61.93 (C5-OCH3),
57.48 (C8-OCH3), 36.39 (NCH3), 23.68 (C4-CH3),
21,08 (C4′-Me) ppm. Anal. Calcd for: C, 70.99; H, 6.55;
N, 8.28. Found: C, 69.83; H, 6.53; N, 7.95.
6c:
Mp 181-183 ˚C. IR (KBr): 3141, 1665,
1607, 1567, 1522 cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 7.36 (s,
1 H, H-7), 7.18-7.14 (m, 4 H, H-2′, H-3′,
H-5′, H-6′), 6.52 (d, 1 H, J = 0.9
Hz, H-3), 3.99 (s, 3 H, OCH3), 3.85 (s, 3 H, NCH3), 2.41
(s, 3 H, C4′-CH3), 1.63 (d, 3 H, J = 0.9 Hz,
C4-CH3) ppm. ¹³C NMR (62.9
MHz, CDCl3): δ = 162.87 (CO), 148.43
(C-8), 148.27 (C-4), 139.17 (C-6), 136.17 (C-4 ′), 133.17
(C-1′), 130.48 (C-3′, C-5′), 129.30 (C-2′,
C-6′), 127.00 (C-8a), 125.66 (C-3), 124.10 (C-5), 123.20
(C-4a), 106.84 (C-7), 57.03 (OCH3), 37.28 (NCH3),
24.99 (C4-CH3), 21,80 (C4′-CH3) ppm.
Anal. Calcd for C19H18N2O4:
C, 67.44; H, 5.36; N, 8.28. Found: C, 67.83; H, 5.53; N, 7.95.
Representative
Procedure
A solution of compound 5a (120
mg, 0.37 mmol) and Pd(OAc)2 (166 mg, 0.74 mmol) in AcOH
(15 mL) was heated at 120 ˚C for 16 h, under an
argon atmosphere. The reaction mixture was evaporated to dryness
and the residue was chromatographed on silica gel, eluting with
an EtOAc-PE gradient, to give 29 mg (25%) of 5,11-dimethoxy-1,4-dimethyl-1H-pyrido[3,2-b]carbazol-2
(6H)-one (7a),
as an orange solid, and 64 mg (59%) of 1,4-dimethyl-1H-pyrido[3,2-b]carbazole-2,5,11
(6H)-trione (8a),
as a red solid.
7a: Mp 270-272 ˚C.
IR (KBr): 3202, 2930, 1635, 1587, 1550, 1484, 1437, 1230 cm-¹. ¹H
NMR (250 MHz, DMSO-d
6): δ = 8.36
(s, 1 H, NH), 7.96 (d, 1 H, J = 7.9
Hz, H-10), 7.51-7.57 (m, 2 H, H-7 and H-9), 7.40-7.26
(m, 1 H, H-8), 6.54 (s, 1 H, H-3), 3.99 (s, 6 H, 2 OMe), 3.85 (s,
3 H, N1-Me), 2.73 (s, 3 H, C4-Me) ppm. ¹³C
NMR (62.9 MHz, CDCl3): δ = 160.56 (C-2),
146.25 (C-4), 140.28 (C-11), 139.12 (C-5), 130.72 (C-6a), 128.92
(C-10a), 127.79 (C-5a), 124.02 (C-9), 122.52 (C-10), 122.29 (C-8),
120.91 (C-3), 120.63 (C-11a), 116.49 (C-7), 111.25 (C-10b), 62.35
(C5-OCH3), 61.81 (C11-OCH3), 36.08 (NCH3),
23.72 (C4-CH3) ppm. Anal. Calcd for C19H18N2O3:
C, 70.79; H, 5.63; N, 8.69. Found: C, 70.70; H, 5.71; N, 8.50.
8a: Mp >300 ˚C.
IR (KBr): 3424, 2941, 1647, 1575, 1542, 1484 cm-¹. ¹H
NMR (250 MHz, DMSO-d
6): δ = 12.94
(br s, 1 H, N6-H), 8.06 (d, 1 H, J = 7.5
Hz, H-10), 7.56 (d, 1 H, J = 7.5
Hz, H-7), 7.40-7.30 (m, 2 H, H-8, H-9), 6.58 (s, 1 H, H-3),
3.84 (s, 3 H, N1-CH3), 2.56 (s, 3 H, C4-Me) ppm. ¹³C NMR
(62.9 MHz, CDCl3): δ = 178.01 (C-11),
177.33 (C-5), 161.37 (C-2), 149.13 (C-4), 145.89 (C-6a), 137.78
(C-10a), 136.24 (C-5a), 126,43 (C-10a), 123.99 (C-4a), 123.67 (C-9), 122.42
(C-10), 121.81 (C-8), 116.04 (C-3), 114.87 (C-10b), 113.87 (C-7),
30.68 (NCH3), 22.59 (C4-CH3) ppm. MS:
m/z = 292 [M+],
263, 169, 44. Anal. Calcd for C17H12N2O3: C,
69.86; H, 4.14; N, 9.58. Found: C, 69.53; H, 3.97; N, 9.24.