Horm Metab Res 2007; 39(1): 31-40
DOI: 10.1055/s-2007-957353
Original Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Critical Evaluation of Methods for Determination of Body Fat Content in Children: Back to Basic Parameters?

A. Körner 1 , G. Gelbrich 2 , G. Müller 1 , A. Reich 1 , K. Deutscher 1 , R. Gödicke 3 , B. Gronemann 3 , W. Kiess 1
  • 1University Hospital for Children & Adolescents, Leipzig, Germany
  • 2Coordination Center for Clinical Trials Leipzig (KKSL), University of Leipzig, Leipzig, Germany
  • 3Public Health Department of the City of Leipzig, Leipzig, Germany
Further Information

Publication History

Received 4. 5. 2006

Accepted 22. 8. 2006

Publication Date:
16 January 2007 (online)

Abstract

Considering the increasing prevalence of obesity among children and of obesity related disorders in the pediatric population, the reliable evaluation of body fat content in children is of critical importance in research and clinical medicine. In this study, we assessed the congruency of different estimates for body fat content in prepubertal children. We determined anthropometric parameters, such as BMI and skinfold thickness, and bioelectrical impedance in 676 prepubertal Caucasian children. We calculated body fat percentage (BF%) from these parameters applying 5 distinct algorithms and established raw centiles for these models. Expectedly, girls had significantly higher BF% regardless of the method applied. There were, however, significant variances in the calculated amount of BF% between the algorithms, with BIA based equations giving highest BF%, while skinfold based equations tended to provide lower BF% values. Direct comparison of the algorithms revealed a high degree of inconsistency and poor agreement in the assessment of body fat with variations of >10% BF%. Great differences in basic parameters, such as ΔBMI (3.2 kg/m2) or Δskinfolds (1.75-fold), would be needed to reliably predict correct ranking of 10% difference in body fat with 95% probability. In summary, BF% strongly varies depending on both the method as well as the algorithm used. This questions the applicability of such field methods for the assessment of BF% for comparative analyses and the superiority of information over basic parameters such as BMI.

References

  • 1 Kiess W, Böttner A, Raile K, Kapellen T, Müller G, Galler A, Paschke R, Wabitsch M. Type 2 diabetes mellitus in children and adolescents: a review from a european perspective.  Horm Res. 2003;  59 77-84
  • 2 Kiess W, Galler A, Reich A, Müller G, Kapellen T, Deutscher J, Raile K, Kratzsch J. Clinical aspects of obesity in childhood and adolescence.  Obes Rev. 2001;  2 29-36
  • 3 Ellis KJ. Human body composition: in vivo methods.  Physiol Rev. 2000;  80 649-680
  • 4 Deurenberg P, Yap M. The assessment of obesity: methods for measuring body fat and global prevalence of obesity.  Baillieres Best Pract Res Clin Endocrinol Metab. 1999;  13 1-11
  • 5 Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey.  BMJ. 2000;  320 1240-1243
  • 6 Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth.  Hum Biol. 1988;  60 709-723
  • 7 Brook CG. Determination of body composition of children from skinfold measurements.  Arch Dis Child. 1971;  46 182-184
  • 8 Reilly JJ, Wilson J, Durnin JV. Determination of body composition from skinfold thickness: a validation study.  Arch Dis Child. 1995;  73 305-310
  • 9 Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body.  Am J Clin Nutr. 1985;  41 810-817
  • 10 Kromeyer-Hauschild K, Wabitsch M, Geller F, Ziegler A, Geiß HC, Hesse V, Hippel V, Jäger U, Johnsen D, Kiess W, Korte W, Kunze D, Menner K, Müller M, Niemann-Pilatus A, Remer T, Schäfer F, Wittchen HU, Zabransky S, Zellner K, Hebebrand J. Perzentile für den Body Mass Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben.  Monatsschr Kinderheilkd. 2001;  149 807-818
  • 11 Cole TJ, Freeman JV, Preece MA. Body mass index reference curves for the UK, 1990.  Arch Dis Child. 1995;  73 25-29
  • 12 Keller E, Gausche R, Meigen C, Keller A, Burmeister J, Kiess W. Auxological computer based network for early detection of disorders of growth and weight attainment.  J Pediatr Endocrinol Metab.. 2002;  15 149-156
  • 13 Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age- and sex-specific prediction formulas.  Br J Nutr. 1991;  65 105-114
  • 14 Wabitsch M, Braun U, Heinze E, Muche R, Mayer H, Teller W, Fusch C. Body composition in 5-18-y-old obese children and adolescents before and after weight reduction as assessed by deuterium dilution and bioelectrical impedance analysis.  Am J Clin Nutr. 1996;  64 1-6
  • 15 Goran MI, Driscoll P, Johnson R, Nagy TR, Hunter G. Cross-calibration of body-composition techniques against dual-energy X-ray absorptiometry in young children.  Am J Clin Nutr. 1996;  63 299-305
  • 16 Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 17 Gelbrich G. Rank concordance function-a comprehensive description for the agreement of methods measuring metri variables.  Informatik Biometric Epidemiol Med Biol. 2001;  2-3 155
  • 18 Ellis KJ. Measuring body fatness in children and young adults: comparison of bioelectric impedance analysis, total body electrical conductivity, and dual-energy X-ray absorptiometry.  Int J Obes Relat Metab Disord. 1996;  20 866-873
  • 19 Mast M, Sonnichsen A, Langnase K, Labitzke K, Bruse U, Preub U, Muller MJ. Inconsistencies in bioelectrical impedance and anthropometric measurements of fat mass in a field study of prepubertal children.  Br J Nutr. 2002;  87 163-175
  • 20 Baumgartner RN, Ross R, Heymsfield SB. Does adipose tissue influence bioelectric impedance in obese men and women?.  J Appl Physiol. 1998;  84 257-262
  • 21 Gutin B, Litaker M, Islam S, Manos T, Smith C, Treiber F. Body-composition measurement in 9-11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis.  Am J Clin Nutr. 1996;  63 287-292
  • 22 Reich A, Müller G, Gelbrich G, Deutscher K, Godicke R, Kiess W. Obesity and blood pressure-results from the examination of 2365 schoolchildren in Germany.  Int J Obes Relat Metab Disord. 2003;  27 1459-1464
  • 23 Hara M, Saitou E, Iwata F, Okada T, Harada K. Waist-to-height ratio is the best predictor of cardiovascular disease risk factors in Japanese schoolchildren.  J Atheroscler Thromb. 2002;  9 127-132
  • 24 Gelbrich G, Reich A, Muller G, Kiess W. Knowing more by fewer measurements: about the (In)ability of bioelectric impedance to enhance obesity research in children.  J Pediatr Endocrinol Metab. 2005;  18 265-273
  • 25 Böttner A, Kratzsch J, Müller G, Kapellen TM, Blüher S, Keller E, Blüher M, Kiess W. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels.  J Clin Endocrinol Metab. 2004;  89 4053-4061
  • 26 Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years.  Br J Nutr. 1974;  32 77-97
  • 27 Heitmann BL. Evaluation of body fat estimated from body mass index, skinfolds and impedance. A comparative study.  Eur J Clin Nutr. 1990;  44 831-837
  • 28 Liang MT, Su HF, Lee NY. Skin temperature and skin blood flow affect bioelectric impedance study of female fat-free mass.  Med Sci Sports Exerc. 2000;  32 221-227

Correspondence

W. Kiess

University Hospital for Children & Adolescents

University of Leipzig

Oststrasse 21-25

04317 Leipzig

Phone: +4934197 26 000

Fax: +4934197 26 009

Email: Wieland.Kiess@medizin.uni-leipzig.de