Zusammenfassung
Die molekulare Bildgebung funktioneller Parameter wie der Apoptose (programmierter Zelltod) in vivo eröffnet in der klinischen Diagnostik und wissenschaftlichen Forschung neue Dimensionen. Insbesondere bei kardiovaskulären Erkrankungen, die in westlichen Industrienationen hauptsächlich für Morbidität und Mortalität verantwortlich sind, sind neue nichtinvasive Untersuchungstechniken erforderlich, die eine frühzeitige Diagnose schwerwiegender Erkrankungen ermöglichen. Da Apoptose im Gegensatz zur Nekrose schon bei geringfügigen Alterationen des Mikroenvironments von Zellen auftreten und bei zahlreichen kardiovaskulären Erkrankungen eine Rolle spielen, gibt es bereits jetzt weltweit mehrere Forschungsansätze zur molekularen Bildgebung der Apoptose in vivo. In der vorliegenden Übersicht werden die Grundlagen der Apoptose beim Myokardinfarkt, Myokarditis, Atherosklerose, Restenosierung nach Angioplastie und Stentimplantation, bislang eingesetzte bildgebende Techniken, erzielte Resultate und zukünftige Perspektiven der molekularen Bildgebung der Apoptose dargestellt.
Abstract
Molecular imaging of functional parameters such as apoptosis (programmed cell death) in vivo opens new possibilities in clinical diagnostic and scientific research. Especially in the case of cardiovascular diseases that are mainly responsible for both morbidity and mortality in Western industrial nations, innovative non-invasive examination strategies are necessary for early diagnosis of these diseases. Since apoptosis unlike necrosis is present even after minor alterations of the microenvironment of cells and has been shown to be involved in a large number of cardiovascular diseases, there are currently several experimental studies underway with the goal of imaging apoptosis in vivo. The review discusses the basics of apoptosis in myocardial infarction, myocarditis, atherosclerosis, restenosis after angioplasty and stent implantation, currently used imaging techniques, achieved results, and future possibilities for molecular imaging of apoptosis.
Key words
cardiac - vascular - molecular imaging
Literatur
1
Grimm J, Wunder A.
Molekulare Bildgebung: Stand der Forschung.
Fortschr Röntgenstr.
2005;
177
326-337
2
Ittrich H, Lange C, Dahnke H. et al .
Untersuchungen zur Markierung von mesenchymalen Stammzellen mit unterschiedlichen superparamagnetischen Eisenoxidpartikeln und Nachweisbarkeit in der MRT bei 3T.
Fortschr Röntgenstr.
2005;
177
1151-1163
3
Kettering M, Winter J, Zeisberger M. et al .
Magnetisch basierte Steigerung der Nanopartikelaufnahme in Tumorzellen: Kombination von magnetisch induzierter Zellmarkierung und magnetischer Wärmebehandlung.
Fortschr Röntgenstr.
2006;
178
1255-1260
4
Böhm I, Träber F, Block W. et al .
Molekulare Bildgebung von Apoptose und Nekrose - Biologische Grundlagen und Einsatz in der Onkologie.
Fortschr Röntgenstr.
2006;
178
263-271
5
Zwaal R F, Comfurius P, Bevers E M.
Surface exposure of phosphatidylserine in pathological cells.
Cell Mol Life Sci.
2005;
62
971-988
6
Deguchi J O, Aikawa M, Tung C H. et al .
Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo.
Circulation.
2006;
114
55-62
7
Chen J, Tung C H, Mahmood U. et al .
In vivo imaging of proteolytic activity in atherosclerosis.
Circulation.
2002;
105
2766-2771
8
Haberkorn U, Kinscherf R, Krammer P H. et al .
Investigation of a potential scintigraphic marker of apoptosis: radioiodinated Z-Val-Ala-DL-Asp(O-methyl)-fluoromethyl ketone.
Nucl Med Biol.
2001;
28
793-798
9
Kopka K, Faust A, Keul P. et al .
5-pyrrolidinylsulfonyl isatins as a potential tool for the molecular imaging of caspases in apoptosis.
J Med Chem.
2006;
49
6704-6715
10
Messerli S M, Prabhakar S, Tang Y. et al .
A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe.
Neoplasia.
2004;
6
95-105
11
Bauer C, Bauder-Wuest U, Mier W. et al .
131I-labeled peptides as caspase substrates for apoptosis imaging.
J Nucl Med.
2005;
46
1066-1074
12
Mahnken A H, Günther R W, Krombach G.
Kontrastangehobene MRT und MSCT zur kardialen Vitalitätsdiagnostik.
Fortschr Röntgenstr.
2006;
178
771-780
13
Elsässer A, Vogt A M, Nef H. et al .
Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death.
J Am Coll Cardiol.
2004;
43
2191-2199
14
Böhm I, Schild H.
Apoptosis: the complex scenario for a silent cell death.
Molecular Imaging and Biology.
2003;
5
2-14
15
Vahlhaus C, Schäfers M, Bruns H J. et al .
Direct epicardial mapping can differentiate hibernating from scarred myocardium: a validation study with 18F-FDG-PET.
Ann Noninvasive Electrocardiol.
2002;
7
349-356
16
Thimister P W, Hofstra L, Liem I H. et al .
In vivo detection of cell death in the area at risk in acute myocardial infarction.
J Nucl Med.
2003;
44
391-396
17
Taki J, Higuchi T, Kawashima A. et al .
Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using 99 mTc-labeled annexin V.
J Nucl Med.
2004;
45
1536-1541
18
Sosnovik D E, Schellenberger E A, Nahrendorf M. et al .
Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle.
Magn Reson Med.
2005;
54
718-724
19
Dumont E A, Reutelingsperger C PM, Smits J FM. et al .
Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart.
Nat Med.
2001;
7
1352-1355
20
Persigehl T, Heindel W, Bremer C.
MR and optical approaches to molecular imaging.
Abdom Imaging.
2005;
30
342-354
21
Soubret A, Ntziachristos V.
Fluorescence molecular tomography in the presence of background fluorescence.
Phys Med Biol.
2006;
51
3983-4001
22
John A S, Dreyfus G D, Pennell D J.
Images in cardiovascular medicine. Reversible wall thinning in hibernation predicted by cardiovascular magnetic resonance.
Circulation.
2005;
111
e24-5
23
Ni Y, Pislaru C, Bosmans H. et al .
Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging.
Eur Radiol.
2001;
11
876-883
24
Pislaru S V, Ni Y, Pislaru C. et al .
Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent.
Circulation.
1999;
99
690-696
25
Schellenberger E A, Bogdanov Jr A, Högemann D. et al .
Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI.
Mol Imaging.
2002;
1
102-107
26
Schellenberger E A, Sosnovik D, Weissleder R. et al .
Magneto/optical annexin V, a multimodal protein.
Bioconjug Chem.
2004;
15
1062-1067
27
Tilborg G A, Mulder W J, Chin P T. et al .
Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells.
Bioconjug Chem.
2006;
17
865-868
28
Hiller K H, Waller van C, Nahrendorf M. et al .
Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance molecular imaging.
Mol Imaging.
2006;
5
115-121
29
Heverhagen J T, Graser A, Fahr A. et al .
Encapsulation of gadobutrol in AVE-based liposomal carriers for MR detectability.
Magn Reson Imaging.
2004;
22
483-487
30
Mangin M, Mahrholdt H, Sechtem U.
Diagnostik der Myokarditis: Darstellung und Bewertung der verfügbaren Methoden.
Dtsch Med Wochenschr.
2006;
131
1228-1234
31
Kadalie C T.
Stellenwert der MRT bei chronischer Myokarditis.
Z Kardiol.
2005;
94
IV/94-96
32
Tokita N, Hasegawa S, Maruyama K. et al .
99 mTc-Hynic-annexin V imaging to evaluate inflammation and apoptosis in rats with autoimmune myocarditis.
Eur J Nucl Med Mol Imaging.
2003;
30
232-238
33
Klug G, Trieb T, Schocke M F. et al .
Myocarditis diagnosed by magnetic resonance imaging.
Wien Klin Wochenschr.
2006;
118
21
34
Allanore Y, Vignaux O, Arnaud L. et al .
Effects of corticosteroids and immunosuppressors on idiopathic inflammatory myopathy related myocarditis evaluated by magnetic resonance imaging.
Ann Rheum Dis.
2006;
65
249-252
35
Sechtem U, Mahrholdt H, Hager S. et al .
New non-invasive approaches for the diagnosis of cardiomyopathy: magnetic resonance imaging.
Ernst Schering Res Found Workshop.
2006;
55
261-285
36
Choudhury R P, Fuster V, Fayad Z A.
Molecular, cellular and functional imaging of atherosclerosis.
Nat Reviews - Drug Dis.
2004;
3
913-925
37
Shah P K, Falk E, Badimon J J. et al .
Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture.
Circulation.
1995;
92
1565-1569
38
Johnson J L, Baker A H, Oka K. et al .
Suppression of atherosclerotic plaque progression and instability by tissue inhibitor of metalloproteinase-2: involvement of macrophage migration and apoptosis.
Circulation.
2006;
113
2435-2444
39
Kolodgie F D, Petrov A, Virmani R. et al .
Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque.
Circulation.
2003;
108
3134-3139
40
Schäfers M, Riemann B, Kopka K. et al .
Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo.
Circulation.
2004;
109
2554-2559
41
Si-Tayeb K, Monvoisin A, Mazzocco C. et al .
Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis.
Am J Pathol.
2006;
169
1390-1401
42
Odaka C, Tanioka M, Itoh T.
Matrix metalloproteinase-9 in macrophages induces thymic neovascularization following thymocyte apoptosis.
J Immunol.
2005;
174
846-853
43
Johnson L L, Schofield L M, Weber D K. et al .
Uptake of 111In-Z2D3 on SPECT imaging in a swine model of coronary stent restenosis correlated with cell proliferation.
J Nucl Med.
2003;
45
294-299
44
Dickson B C, Gotlieb A I.
Towards understanding acute destabilization of vulnerable atherosclerotic plaques.
Cardiovasc Pathol.
2003;
12
237-248
45
Kietselaer B L, Reutelingsperger C P, Heidendal G A. et al .
Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis.
N Engl J Med.
2004;
350
1472-1473
46
Laxman B, Hall D E, Bhojani M D. et al .
Noninvasive real-time imaging of apoptosis.
Proc Natl Acad Sci USA.
2002;
99
16 551-16 555
47
Maintz D, Ozgun M, Hoffmeier A. et al .
Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI.
Eur Heart J.
2006;
27
1732-1736
48
Schmitz S A.
Eisenoxidverstärkte MRT inflammatorischeratherosklerotischer Läsionen: Übersichtexperimenteller und erster klinischer Ergebnisse.
Fortschr Röntgenstr.
2003;
175
469-476
49
Cury R C, Houser S L, Furie K L. et al .
Vulnerable plaque detection by 3.0 tesla magnetic resonance imaging.
Invest Radiol.
2006;
41
112-115
50
Mitra A K, Agrawal D K.
In stent restenosis: bane of the stent era.
J Clin Pathol.
2006;
59
232-239
51
Skowasch D, Jabs A, Andrie R. et al .
Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis. Tissue characteristics compared to primary atherosclerosis.
J Vasc Res.
2004;
41
525-534
52
Beohar N, Flaherty J D, Davidson C J. et al .
Antirestenotic effects of a locally delivered caspase inhibitor in a balloon injury model.
Circulation.
2004;
109
108-113
53
Johnson T W, Wu Y X, Herdeg C. et al .
Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries.
Arterioscler Thromb Vasc Biol.
2005;
25
754-759
54
Indolfi C, Mongiardo A, Spaccarotella C. et al .
The present and future of drug-eluting stents.
Ital Heart J.
2005;
6
498-506
55
Nguyen K T, Shaikh N, Wawro D. et al .
Molecular responses of vascular smooth muscle cells to paclitaxel-eluting bioresorbable stent materials.
J Biomed Mater Res A.
2004;
69
513-524
56
Curcio A, Torella D, Cuda G. et al .
Effect of stent coating alone on in vitro vascular smooth muscle cell proliferation and apoptosis.
Am J Physiol Circ Physiol.
2004;
286
H902-H908
57
Venkatasubramanian R T, Grassl E D, Barocas V H. et al .
Effects of freezing and cryopreservation on the mechanical properties of arteries.
Ann Biomed Eng.
2006;
34
823-832
58
Laird J R, Biamino G, McNamara T. et al .
Cryoplasty for the treatment of femoropopliteal arterial disease: extended follow-up results.
J Endovasc Ther.
2006;
13
II52-II59
59
Joye J D.
The clinical application of cryoplasty for infrainguinal peripheral arterial disease.
Tech Vasc Intery Radiol.
2005;
8
160-164
Dr. Ingrid Böhm
Radiolog. Universitätsklinik, Rheinische Friedrich-Wilhelms-Universität, Bonn
Sigmund-Freud Str. 25
53105 Bonn
Phone: ++49/2 28/2 87 96 31
Fax: ++49/2 28/2 87 44 57
Email: ingrid.boehm@ukb.uni-bonn.de