Int J Sports Med 2008; 29(1): 16-20
DOI: 10.1055/s-2007-965068
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Accumulated Oxygen Deficit during Ramp Exercise

J.-P. Pouilly1 , T. Busso1
  • 1Unité de Recherche Physiologie et Physiopathologie de l'Exercice et Handicap, Université de St-Etienne, France
Further Information

Publication History

accepted after revision October 25, 2006

Publication Date:
05 July 2007 (online)

Abstract

This study aimed to compare oxygen deficit during exhaustive ramp exercise (ODramp and ODlag) with maximal oxygen deficit during a high-intensity constant-power test (MAOD). ODramp was estimated from the difference between oxygen demand and actual oxygen uptake. ODlag was estimated using a simple equation assuming a linear increase in oxygen uptake lagging behind metabolic requirement. After a first test providing estimation of Ppeak, 12 healthy males did two 15 W · min-1 and two 30 W · min-1 ramp tests to evaluate in duplicate ODramp and ODlag and an exhaustive exercise at 105 % of Ppeak to evaluate MAOD. ODramp from the 15 W · min-1 tests (1.50 ± 1.83 and 2.60 ± 2.12 l) and from the 30 W · min-1 tests (2.41 ± 1.00 and 2.72 ± 1.23 l) did not differ from MAOD (2.33 ± 0.50 l). Contrary to ODlag estimated from the 15 W · min-1 tests (2.27 ± 0.30 and 2.31 ± 0.31 l), ODlag from the 30 W · min-1 tests (2.51 ± 0.34 and 2.52 ± 0.36 l) was significantly greater than MAOD (p < 0.05). The conclusion is that the oxygen deficit would accumulate progressively during a ramp test until attaining the maximal oxygen deficit. This measurement would not however give reliable index of an individual subject due to the elevated test-retest variability.

References

  • 1 Bangsbo J. Quantification of anaerobic energy production during intense exercise.  Med Sci Sports Exerc. 1998;  30 47-52
  • 2 Bangsbo J, Gollnick P D, Graham T E, Juel C, Kiens B, Mizuno M, Saltin B. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans.  J Physiol. 1990;  422 539-559
  • 3 Davis J A, Whipp B J, Lamarra N, Huntsman D J, Frank M H, Wasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test.  Med Sci Sports Exerc. 1982;  14 339-343
  • 4 Day J R, Rossiter H B, Coats E M, Skasick A, Whipp B J. The maximally attainable V·O2 during exercise in humans: the peak vs. maximum issue.  J Appl Physiol. 2003;  95 1901-1907
  • 5 Doherty M, Smith P M, Schroder K. Reproducibility of the maximum accumulated oxygen deficit and run time to exhaustion during short-distance running.  J Sports Sci. 2000;  18 331-338
  • 6 Green S, Dawson B. Measurement of anaerobic capacities in humans. Definitions, limitations and unsolved problems.  Sports Med. 1993;  15 312-327
  • 7 Hansen J E, Casaburi R, Cooper D M, Wasserman K. Oxygen uptake as related to work rate increment during cycle ergometer exercise.  Eur J Appl Physiol. 1988;  57 140-145
  • 8 Hopkins W G, Schabort E J, Hawley J A. Reliability of power in physical performance tests.  Sports Med. 2001;  31 211-234
  • 9 Hughson R L, Inman M D. Oxygen uptake kinetics from ramp work tests: variability of single test values.  J Appl Physiol. 1986;  61 373-376
  • 10 Jones A M, Carter H. Oxygen uptake - work rate relationship during two consecutive ramp exercise tests.  Int J Sports Med. 2004;  25 415-420
  • 11 Medbo J I, Burgers S. Effect of training on the anaerobic capacity.  Med Sci Sports Exerc. 1990;  22 501-507
  • 12 Medbo J I, Mohn A C, Tabata I, Bahr R, Vaage O, Sejersted O M. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 13 Medbo J I, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.  J Appl Physiol. 1993;  75 1654-1660
  • 14 Medbo J I, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise.  J Appl Physiol. 1989;  67 1881-1886
  • 15 Scott C B, Bogdanffy G M. Aerobic and anaerobic energy expenditure during exhaustive ramp exercise.  Int J Sports Med. 1998;  19 277-280
  • 16 Scott C B, Roby F B, Lohman T G, Bunt J C. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity.  Med Sci Sports Exerc. 1991;  23 618-624
  • 17 Swanson G D, Hughson R L. On the modeling and interpretation of oxygen uptake kinetics from ramp work rate tests.  J Appl Physiol. 1988;  65 2453-2458
  • 18 Takaishi T, Ono T, Yasuda Y. Relationship between muscle fatigue and oxygen uptake during cycle ergometer exercise with different ramp slope increments.  Eur J Appl Physiol. 1992;  65 335-339
  • 19 Weber C L, Schneider D A. Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent.  J Appl Physiol. 2002;  92 1795-1801
  • 20 Weber C L, Schneider D A. Reliability of MAOD measured at 110 % and 120 % of peak oxygen uptake for cycling.  Med Sci Sports Exerc. 2001;  33 1056-1059
  • 21 Whipp B J. Dynamics of pulmonary gas exchange.  Circulation. 1987;  76 VI 18-28
  • 22 Whipp B J, Davis J A, Torres F, Wasserman K. A test to determine parameters of aerobic function during exercise.  J Appl Physiol. 1981;  50 217-221

 Mr.
Jean-Pierre PouillyPhD Student 

Unité de Recherche Physiologie et Physiopathologie de l'Exercice et Handicap
Université de St Etienne
Médecine du Sport et Myologie, Hôpital de Bellevue

42055 St Etienne cedex 2

France

Phone: + 33 477 12 79 85

Fax: + 33 477 12 72 29

Email: JP.Pouilly@univ-st-etienne.fr