Int J Sports Med 2007; 28(12): 1053-1058
DOI: 10.1055/s-2007-965117
Genetics & Molecular Biology

© Georg Thieme Verlag KG Stuttgart · New York

Gene Expression Profile of Sprinter's Muscle

M. Yoshioka1 , H. Tanaka2 , N. Shono3 , M. Shindo2 , J. St-Amand1
  • 1Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL) and Laval University, Quebec, Canada
  • 2Faculty of Sport and Health Science, Fukuoka University, Fukuoka, Japan
  • 3Institute of Lifestyle Medical Science, Fukuoka, Japan
Further Information

Publication History

accepted after revision December 15, 2006

Publication Date:
05 July 2007 (online)

Abstract

We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

References

  • 1 Andersen J L, Klitgaard H, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training.  Acta Physiol Scand. 1994;  151 135-142
  • 2 Bernier G, Pool M, Kilcup M, Alfoldi J, De Repentigny Y, Kothary R. Acf7 (MACF) is an actin and microtubule linker protein whose expression predominates in neural, muscle, and lung development.  Dev Dyn. 2000;  219 216-225
  • 3 Bottinelli R, Canepari M, Pellegrino M A, Reggiani C. Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence.  J Physiol. 1996;  495 573-586
  • 4 Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity.  Prog Biophys Mol Biol. 2000;  73 195-262
  • 5 Bottinelli R, Schiaffino S, Reggiani C. Force-velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle.  J Physiol. 1991;  437 655-672
  • 6 Campbell W G, Gordon S E, Carlson C J, Pattison J S, Hamilton M T, Booth F W. Differential global gene expression in red and white skeletal muscle.  Am J Physiol. 2001;  280 C763-C768
  • 7 Dinel S, Bolduc C, Belleau P, Boivin A, Yoshioka M, Calvo E, Piedboeuf B, Snyder E E, Labrie F, St-Amand J. Reproducibility, bioinformatic analysis and power of the SAGE method to evaluate changes in transcriptome.  Nucleic Acids Res. 2005;  33 e26 21-28
  • 8 Echegaray M, Rivera M A. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence.  Sports Med. 2001;  31 919-934
  • 9 Essen B, Jansson E, Henriksson J, Taylor A W, Saltin B. Metabolic characteristics of fibre types in human skeletal muscle.  Acta Physiol Scand. 1975;  95 153-165
  • 10 Goldman R F, Buskirk E R. (eds) .A Method for Underwater Weighing and the Determination of Body Density. Washington DC; Natl. Research Council 1961: 78-89
  • 11 Hespel P, Op't Eijnde B, Van Leemputte M, Urso B, Greenhaff P L, Labarque V, Dymarkowski S, Van Hecke P, Richter E A. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans.  J Physiol. 2001;  536 625-633
  • 12 Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle.  Physiol Rev. 1992;  72 369-417
  • 13 Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity.  Science. 1995;  270 293-296
  • 14 Lash A E, Tolstoshev C M, Wagner L, Schuler G D, Strausberg R L, Riggins G J, Altschul S F. SAGEmap: a public gene expression resource.  Genome Res. 2000;  10 1051-1060
  • 15 Linossier M T, Dormois D, Perier C, Frey J, Geyssant A, Denis C. Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining.  Acta Physiol Scand. 1997;  161 439-445
  • 16 Lowry C V, Kimmey J S, Felder S, Chi M M, Kaiser K K, Passonneau P N, Kirk K A, Lowry O H. Enzyme patterns in single human muscle fibers.  J Biol Chem. 1978;  253 8269-8277
  • 17 Minajeva A, Neagoe C, Kulke M, Linke W A. Titin-based contribution to shortening velocity of rabbit skeletal myofibrils.  J Physiol. 2002;  540 177-188
  • 18 Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen J L, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training.  J Physiol. 2006;  573 525-534
  • 19 Pette D, Staron R S. Myosin isoforms, muscle fiber types, and transitions.  Microsc Res Tech. 2000;  50 500-509
  • 20 Schachat F H, Diamond M S, Brandt P W. Effect of different troponin T-tropomyosin combinations on thin filament activation.  J Mol Biol. 1987;  198 551-554
  • 21 St-Amand J, Okamura K, Matsumoto K, Shimizu S, Sogawa Y. Characterization of control and immobilized skeletal muscle: an overview from genetic engineering.  FASEB J. 2001;  15 684-692
  • 22 Stienen G J, Kiers J L, Bottinelli R, Reggiani C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence.  J Physiol. 1996;  493 299-307
  • 23 Sun Y, Zhang J, Kraeft S K, Auclair D, Chang M S, Liu Y, Sutherland R, Salgia R, Griffin J D, Ferland L H, Chen L B. Molecular cloning and characterization of human trabeculin-alpha, a giant protein defining a new family of actin-binding proteins.  J Biol Chem. 1999;  274 33522-33530
  • 24 Veksler V I, Kuznetsov A V, Anflous K, Mateo P, van Deursen J, Wieringa B, Ventura-Clapier R. Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function.  J Biol Chem. 1995;  270 19921-19929
  • 25 Volek J S, Rawson E S. Scientific basis and practical aspects of creatine supplementation for athletes.  Nutrition. 2004;  20 609-614
  • 26 Walter G, Vandenborne K, Elliott M, Leigh J S. In vivo ATP synthesis rates in single human muscles during high intensity exercise.  J Physiol. 1999;  519 901-910
  • 27 Willoughby D S, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression.  Med Sci Sports Exerc. 2001;  33 1674-1681
  • 28 Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism.  Physiol Rev. 2000;  80 1107-1213
  • 29 Yamamoto K. The binding of skeletal muscle C-protein to regulated actin.  FEBS Lett. 1986;  208 123-127
  • 30 Yoshioka M, Boivin A, Ye P, Labrie F, St-Amand J. Effects of dihydrotestosterone on skeletal muscle transcriptome in mice measured by serial analysis of gene expression.  J Mol Endocrinol. 2006;  36 247-259
  • 31 Yoshioka M, Tanaka H, Shono N, Snyder E E, Shindo M, St-Amand J. Serial analysis of gene expression in the skeletal muscle of endurance athletes compared to sedentary men.  FASEB J. 2003;  17 1812-1819

Dr. Ph.D. Jonny St-Amand

Molecular Endocrinology and Oncology Research Center
Laval University Medical Center (CHUL) and Laval University

GIV 4G2 Quebec

Canada

Email: Jonny.St-Amand@crchul.ulaval.ca