Abstract
Asymmetric alkynylation reactions to mono-, di-, and trisubstituted aromatic aldehydes have been accomplished in good yields and with a range of selectivities. For salicylaldehyde derivatives both the yield and the enantioselectivity of the alkynylation reaction appears to depend not only upon the electron-donating/electron-withdrawing nature of substituents but also upon their position in the ring relative to the carbonyl. For benzaldehyde derivatives this observation is exemplified with nitrobenzaldehyde wherein asymmetric alkynylation with 3-nitrobenzaldehyde occurs in virtually quantitative yield and enantioselectivity. In contrast our attempts at asymmetric alkynylations with 4-nitrobenzaldehyde failed.
Key words
asymmetric alkynylation reaction - aromatic aldehydes -
N- methylephedrine - substituent effects - position effects
References
1a
Pu L.
Tetrahedron
2003,
59:
9873
1b
Gao G.
Xie R.-G.
Pu L.
Proc. Natl. Acad. Sci. U.S.A.
2004,
15:
5417
1c
Xu Z.
Chen C.
Xu J.
Miao M.
Yan W.
Wang R.
Org. Lett.
2004,
6:
1193
1d
Lu G.
Li Y.-M.
Li X.-S.
Chan ASC.
Coord. Chem. Rev.
2005,
249:
1736
2
Modern Acetylene Chemistry
Strang PJ.
Diederich F.
VCH;
Weinheim:
1995.
3a
Nicolaou KC.
Webber SE.
J. Am. Chem. Soc.
1984,
106:
5734
3b
Vourloumis D.
Kim KD.
Petersen JL.
Margriotis PA.
J. Org. Chem.
1996,
61:
4848
4a
Li Z.
Upadhyay V.
DeCamp AE.
DiMichele L.
Reider PJ.
Synthesis
1999,
1453
4b
Lu G.
Zhou Z.
Chan WL.
Chan ASC.
Tetrahedron: Asymmetry
2001,
12:
2147
4c
Watt CC.
Thoniyot P.
Hirayama LC.
Romano T.
Singaram B.
Tetrahedron: Asymmetry
2005,
16:
1829
4d
Pizzuti MG.
Superchi S.
Tetrahedron: Asymmetry
2005,
16:
2263
4e
Trost BM.
Weiss AH.
von Wangelin AJ.
J. Am. Chem. Soc.
2006,
128:
8
5a
Kang Y.-f.
Wang R.
Liu L.
Da C s.
Yan W.-j.
Xu Z.-q.
Tetrahedron Lett.
2005,
46:
863
5b
Braga AL.
Appelt HR.
Silveira CC.
Wessjohann LA.
Schneider PH.
Tetrahedron
2002,
58:
10413
6
Liu L.
Wang R.
Kang Y.-F.
Cai H.-Q.
Chen C.
Synlett
2006,
1245
7
Zhou Y.-f.
Wang R.
Xu Z.-q.
Yan W.-j.
Lei L.
Gao Y.-f.
Da C.-s.
Tetrahedron: Asymmetry
2004,
15:
589
8
Mann A.
Muller C.
Tyrrell E.
J. Chem. Soc., Perkin Trans. 1
1998,
1427
9
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
10
Muehldorf AV.
Guzman-Perez A.
Kluge AF.
Tetrahedron Lett.
1994,
35:
8755
11
Tyrrell E.
Tesfa KH.
Millet J.
Muller C.
Synthesis
2006,
3099
12
Boyall D.
Frantz DE.
Carreira EM.
Org. Lett.
2002,
4:
2605
13a
Frantz DE.
Fassler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
13b
Anand NK.
Carreira EM.
J. Am. Chem. Soc.
2002,
124:
2605
14 The effects of ortho substituents upon yield and enantiomeric excess has recently been highlighted.4e With a dinuclear Zn catalyst and Me2 Zn a yield of 91% was recorded for the analogous reaction.
15 This reaction was repeated 3 times with the same result. Interestingly, exposure of the same aldehyde to phenylethynylmagnesium bromide gave the racemic propargyl alcohol in a modest 30% yield
16 CCDC 628668 [(R )-10 ] and CCDC 628669 [(R )-15 ] contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
17 We have used both forms of N -methylephedrine in some selected examples in our studies in an attempt to obtain crystals suitable for X-ray analysis. We observed a significant difference in crystal morphology between enantiomeric propargyl alcohols.
18 In addition to the differences in the 1 H NMR spectra of these enantiomers, we observed differences in mp 90.5-90.7 °C (R
- enantiomer) and 86.7-87.1 °C (S -enantiomer) and the corresponding HPLC retention time t
R = 9.69 (major), 14.31 min (minor) R -enantiomer and t
R = 61.35 (major), 9.80 min (minor) S -enantiomer.