Subscribe to RSS
DOI: 10.1055/s-2007-966045
Enantioselective Alkynylation Reactions to Substituted Benzaldehyde and Salicylaldehyde Derivatives: The Effect of Substituents upon the Efficiency and Enantioselectivity
Publication History
Publication Date:
02 May 2007 (online)
Abstract
Asymmetric alkynylation reactions to mono-, di-, and trisubstituted aromatic aldehydes have been accomplished in good yields and with a range of selectivities. For salicylaldehyde derivatives both the yield and the enantioselectivity of the alkynylation reaction appears to depend not only upon the electron-donating/electron-withdrawing nature of substituents but also upon their position in the ring relative to the carbonyl. For benzaldehyde derivatives this observation is exemplified with nitrobenzaldehyde wherein asymmetric alkynylation with 3-nitrobenzaldehyde occurs in virtually quantitative yield and enantioselectivity. In contrast our attempts at asymmetric alkynylations with 4-nitrobenzaldehyde failed.
Key words
asymmetric alkynylation reaction - aromatic aldehydes - N-methylephedrine - substituent effects - position effects
-
1a
Pu L. Tetrahedron 2003, 59: 9873 -
1b
Gao G.Xie R.-G.Pu L. Proc. Natl. Acad. Sci. U.S.A. 2004, 15: 5417 -
1c
Xu Z.Chen C.Xu J.Miao M.Yan W.Wang R. Org. Lett. 2004, 6: 1193 -
1d
Lu G.Li Y.-M.Li X.-S.Chan ASC. Coord. Chem. Rev. 2005, 249: 1736 - 2
Modern Acetylene Chemistry
Strang PJ.Diederich F. VCH; Weinheim: 1995. -
3a
Nicolaou KC.Webber SE. J. Am. Chem. Soc. 1984, 106: 5734 -
3b
Vourloumis D.Kim KD.Petersen JL.Margriotis PA. J. Org. Chem. 1996, 61: 4848 -
4a
Li Z.Upadhyay V.DeCamp AE.DiMichele L.Reider PJ. Synthesis 1999, 1453 -
4b
Lu G.Zhou Z.Chan WL.Chan ASC. Tetrahedron: Asymmetry 2001, 12: 2147 -
4c
Watt CC.Thoniyot P.Hirayama LC.Romano T.Singaram B. Tetrahedron: Asymmetry 2005, 16: 1829 -
4d
Pizzuti MG.Superchi S. Tetrahedron: Asymmetry 2005, 16: 2263 -
4e
Trost BM.Weiss AH.von Wangelin AJ. J. Am. Chem. Soc. 2006, 128: 8 -
5a
Kang Y.-f.Wang R.Liu L.Da C s.Yan W.-j.Xu Z.-q. Tetrahedron Lett. 2005, 46: 863 -
5b
Braga AL.Appelt HR.Silveira CC.Wessjohann LA.Schneider PH. Tetrahedron 2002, 58: 10413 - 6
Liu L.Wang R.Kang Y.-F.Cai H.-Q.Chen C. Synlett 2006, 1245 - 7
Zhou Y.-f.Wang R.Xu Z.-q.Yan W.-j.Lei L.Gao Y.-f.Da C.-s. Tetrahedron: Asymmetry 2004, 15: 589 - 8
Mann A.Muller C.Tyrrell E. J. Chem. Soc., Perkin Trans. 1 1998, 1427 - 9
Nicholas KM. Acc. Chem. Res. 1987, 20: 207 - 10
Muehldorf AV.Guzman-Perez A.Kluge AF. Tetrahedron Lett. 1994, 35: 8755 - 11
Tyrrell E.Tesfa KH.Millet J.Muller C. Synthesis 2006, 3099 - 12
Boyall D.Frantz DE.Carreira EM. Org. Lett. 2002, 4: 2605 -
13a
Frantz DE.Fassler R.Carreira EM. J. Am. Chem. Soc. 2000, 122: 1806 -
13b
Anand NK.Carreira EM. J. Am. Chem. Soc. 2002, 124: 2605 - 15 This reaction was repeated 3 times with the same result. Interestingly, exposure of the same aldehyde to phenylethynylmagnesium bromide gave the racemic propargyl alcohol in a modest 30% yield
References
The effects of ortho substituents upon yield and enantiomeric excess has recently been highlighted.4e With a dinuclear Zn catalyst and Me2Zn a yield of 91% was recorded for the analogous reaction.
16CCDC 628668 [(R)-10] and CCDC 628669 [(R)-15] contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
17We have used both forms of N-methylephedrine in some selected examples in our studies in an attempt to obtain crystals suitable for X-ray analysis. We observed a significant difference in crystal morphology between enantiomeric propargyl alcohols.
18In addition to the differences in the 1H NMR spectra of these enantiomers, we observed differences in mp 90.5-90.7 °C (R -enantiomer) and 86.7-87.1 °C (S-enantiomer) and the corresponding HPLC retention time t R = 9.69 (major), 14.31 min (minor) R-enantiomer and t R = 61.35 (major), 9.80 min (minor) S-enantiomer.