References and Notes
1 New address: Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
2a
Schuster HF.
Coppola GM.
Allenes in Organic Synthesis
Wiley;
New York:
1984.
2b
Modern Allene Chemistry
Krause N.
Hashmi ASK.
Wiley-VCH;
Weinheim:
2004.
2c
Zimmer R.
Dinesh CU.
Nandanan E.
Khan FA.
Chem. Rev.
2000,
100:
3067
2d
Marshall JA.
Chem. Rev.
2000,
100:
3163
2e
Hoffmann-Röder A.
Krause N.
Angew. Chem. Int. Ed.
2002,
41:
2933 ; Angew. Chem. 2002, 114, 3057
2f
Hoffmann-Röder A.
Krause N.
Angew. Chem. Int. Ed.
2004,
43:
1196 ; Angew. Chem.
2004, 116, 1216
2g
Krause N.
Hoffmann-Röder A.
Tetrahedron
2004,
60:
11671
2h
Ma S.
Chem. Rev.
2005,
105:
2829
3a
Krause N.
Morita N.
In Comprehensive Organometallic Chemistry III
Vol. 9:
Crabtree RH.
Mingos DMP.
Elsevier;
Oxford:
2006.
p.501-586
3b
Hoffmann-Röder A.
Krause N.
Org. Lett.
2001,
3:
2537
3c
Krause N.
Hoffmann-Röder A.
Canisius J.
Synthesis
2002,
1759
3d
Ma S.
Acc. Chem. Res.
2003,
36:
701
3e
Kar A.
Argade NP.
Synthesis
2005,
2995
4a
Morita N.
Krause N.
Org. Lett.
2004,
6:
4121
4b
Morita N.
Krause N.
Angew. Chem. Int. Ed.
2006,
45:
1897 ; Angew. Chem.
2006, 118, 1930
4c
Morita N.
Krause N.
Eur. J. Org. Chem.
2006,
4634
4d
Gockel B.
Krause N.
Org. Lett.
2006,
8:
4485
5a
Handbook of Functionalized Organometallics
Knochel P.
Wiley-VCH;
Weinheim:
2005.
5b
Boudier A.
Bromm LA.
Lotz M.
Knochel P.
Angew. Chem. Int. Ed.
2000,
39:
4414 ; Angew. Chem. 2000, 112, 4584
5c
Knochel P. In Modern Organocopper Chemistry
Krause N.
Wiley-VCH;
Weinheim:
2002.
p.45-78
5d
Knochel P.
Dohle W.
Gommermann N.
Kneisel FF.
Kopp F.
Korn T.
Sapountzis I.
Vu VA.
Angew. Chem. Int. Ed.
2003,
42:
4302 ; Angew. Chem.
2003, 115, 4438
6a
Sapountzis I.
Knochel P.
Angew. Chem. Int. Ed.
2002,
41:
1610 ; Angew. Chem. 2002, 114, 1680
6b
Sapountzis I.
Dube H.
Lewis R.
Gommermann N.
Knochel P.
J. Org. Chem.
2005,
70:
2445
6c
Krasovsky A.
Straub BF.
Knochel P.
Angew. Chem. Int. Ed.
2006,
45:
159 ; Angew. Chem. 2006, 118, 165
Substrates 1a,b and 3 have been synthesized previously:
7a
Marshall JA.
DuBay WJ.
J. Org. Chem.
1993,
58:
3435
7b
Marshall JA.
Blough BE.
J. Org. Chem.
1991,
55:
2225
7c
Alexakis A.
Marek I.
Mangeney P.
Normant JF.
Tetrahedron
1991,
47:
1677
8
Miko T.
Ligeneau X.
Pertz HH.
Ganellin CR.
Arrang J.-M.
Schwartz J.-C.
Schunack W.
Stark H.
J. Med. Chem.
2003,
46:
1523
9a
Lipshutz BH.
Noson K.
Chrisman W.
Lower A.
J. Am. Chem. Soc.
2003,
125:
8779
9b
Chen J.-X.
Daeuble JF.
Brestensky DM.
Stryker JM.
Tetrahedron
2000,
56:
2153
10
Claesson A.
Olsson LI.
J. Chem. Soc., Chem. Commun.
1979,
524
11
Thorand S.
Krause N.
J. Org. Chem.
1998,
63:
8551
12
Representative Procedure and Spectroscopic Data - Synthesis of 1-(
tert
-Butyldimethylsilyloxy)-5-(4-fluoro-phenyl)-3-methylpenta-3,4-dien-2-ol (2a).
To a stirred solution of 4-fluoroiodobenzene (706 mg, 3.2 mmol) in anhyd THF (15 mL) was added i-PrMgCl (2.1 mL, 3.4 mmol; 1.7 M in Et2O) at -40 °C. After 1 h at this temperature, the Grignard reagent was added via cannula to a cold (-30 °C), freshly prepared solution of copper(I) cyanide (142 mg, 1.6 mmol) and tri-n-butylphosphine (322 mg, 1.6 mmol) in anhyd THF (20 mL). The resulting cuprate solution was stirred for 30 min at -30 °C, followed by addition of cis-1-(tert-butyldimethylsilyloxy)-2,3-epoxy-3-methylpent-4-yne (1, 300 mg, 1.3 mmol) in anhyd THF (3 mL). After stirring for 16 h under warming to r.t., quenching with 3 mL of a sat. NH4Cl solution, washing with 3 × 10 mL of a 2% H2O2 solution, filtration through a pad of Celite®, evaporation of the solvent and column chromatography (SiO2, EtOAc-cyclohexane = 10:1) furnished 287 mg (68%) of 2a as a yellow oil (dr = 94:6 according to NMR analysis).
1H NMR (500 MHz, C6D6): δ = 7.14-7.09 (m, 2 H), 6.87-6.83 (m, 2 H), 6.10 (m, 1 H), 4.21 (m, 1 H), 3.73 (dd,
²
J
HH = 10.0 Hz,
³
J
HH = 4.0 Hz, 1 H), 3.66 (dd,
²
J
HH = 10.0 Hz,
³
J
HH = 4.0 Hz, 1 H), 2.41 (br s, 1 H), 1.88 (m, 3 H), 0.95 (s, 9 H), 0.04 and 0.03 (2 s, 6 H) ppm. 13C NMR (125 MHz, C6D6): δ = 202.0, 163.4 (d, 1
J
CF = 241 Hz), 132.3, 128.7 (d, 3
J
CF = 10 Hz), 115.9 (d, 2
J
CF = 21 Hz), 105.2, 95.6, 72.8, 66.2, 26.0, 18.4, 15.3, -5.3 ppm.
Spectroscopic Data of 2-(4-Methoxycarbonylphenyl-ethenylidene)cyclohexan-1-ol (4a).
1H NMR (400 MHz, C6D6): δ = 8.18 (d,
³
J
HH = 8.2 Hz, 2 H), 7.26 (d,
³
J
HH = 8.2 Hz, 2 H), 6.13 (s, 1 H), 4.04 (m, 2 H), 3.49 (s, 3 H), 2.43 (m, 1 H), 1.99 (m, 3 H), 1.65 (m, 1 H), 1.56 (m, 1 H), 1.44 (m, 1 H), 1.36 (m, 1 H) ppm. 13C NMR (100 MHz, C6D6): δ = 199.1, 166.6, 140.7, 130.5, 127.0, 112.3, 97.0, 69.2, 51.6, 36.3, 29.3, 27.0, 23.3 ppm.
Spectroscopic Data of
cis
-2-(
tert
-Butyldimethylsilyloxy-methyl)-3-methyl-5-(4-trimethylsilylethynylphenyl)-2,5-dihydrofuran (10).
1H NMR (400 MHz, C6D6): δ = 7.43 (d,
³
J
HH = 8.3 Hz, 2 H), 7.21 (d,
³
J
HH = 8.3 Hz, 2 H), 5.58 (br s, 1 H), 5.21 (s, 1 H), 4.68 (br s, 1 H), 3.79 (dd,
²
J
HH = 10.0 Hz,
³
J
HH = 4.0 Hz, 1 H), 3.66 (dd,
²
J
HH = 10.0 Hz,
³
J
HH = 4.0 Hz, 1 H), 1.62 (s, 3 H), 0.95 (s, 9 H), 0.10 (s, 9 H), 0.05 (s, 6 H) ppm. 13C NMR (100 MHz, C6D6): δ = 142.2, 137.6, 131.4, 129.0, 125.7, 121.5, 88.7, 86.1, 65.1, 25.9, 18.3, 12.4, -0.8, -5.5 ppm.